1
|
Silva PA, Trigo S, Marques CI, Cardoso GC, Soares MC. Experimental evidence for a role of dopamine in avian personality traits. J Exp Biol 2020; 223:jeb216499. [PMID: 31953366 DOI: 10.1242/jeb.216499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022]
Abstract
There is increasing interest in the genetic and physiological bases of behavioural differences among individuals, namely animal personality. One particular dopamine (DA) receptor gene (the dopamine receptor D4 gene) has been used as candidate gene to explain personality differences, but with mixed results. Here, we used an alternative approach, exogenously manipulating the dopaminergic system and testing for effects on personality assays in a social bird species, the common waxbill (Estrilda astrild). We treated birds with agonists and antagonists for DA receptors of both D1 and D2 receptor pathways (the latter includes the D4 receptor) and found that short-term manipulation of DA signalling had an immediate effect on personality-related behaviours. In an assay of social responses (mirror test), manipulation of D2 receptor pathways reduced time spent looking at the social stimulus (mirror image). Blocking D2 receptors reduced motor activity in this social assay, while treatment with a D2 receptor agonist augmented activity in this social assay but reduced activity in a non-social behavioural assay. Also, in the non-social assay, treatment with the D1 receptor antagonist markedly increased time spent at the feeder. These results show distinct and context-specific effects of the dopaminergic pathways on waxbill personality traits. Our results also suggest that experimental manipulation of DA signalling can disrupt a behavioural correlation (more active individuals being less attentive to mirror image) that is habitually observed as part of a behavioural syndrome in waxbills. We discuss our results in the context of animal personality, and the role of the DA system in reward and social behaviour.
Collapse
Affiliation(s)
- Paulo A Silva
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Sandra Trigo
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Cristiana I Marques
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Gonçalo C Cardoso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
- Behavioural Ecology Group, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Marta C Soares
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| |
Collapse
|
2
|
Genome scan for selection in South American chickens reveals a region under selection associated with aggressiveness. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Huang Z, Tu F, Murphy RW. Analysis of the complete mitogenome of Oriental turtle dove (Streptopelia orientalis) and implications for species divergence. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Verhulst EC, Mateman AC, Zwier MV, Caro SP, Verhoeven KJF, van Oers K. Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD4 DNA methylation. Mol Ecol 2016; 25:1801-11. [PMID: 26678756 DOI: 10.1111/mec.13519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
Personality traits are heritable and respond to natural selection, but are at the same time influenced by the ontogenetic environment. Epigenetic effects, such as DNA methylation, have been proposed as a key mechanism to control personality variation. However, to date little is known about the contribution of epigenetic effects to natural variation in behaviour. Here, we show that great tit (Parus major) lines artificially selected for divergent exploratory behaviour for four generations differ in their DNA methylation levels at the dopamine receptor D4 (DRD4) gene. This D4 receptor is statistically associated with personality traits in both humans and nonhuman animals, including the great tit. Previous work in this songbird failed to detect functional genetic polymorphisms within DRD4 that could account for the gene-trait association. However, our observation supports the idea that DRD4 is functionally involved in exploratory behaviour but that its effects are mediated by DNA methylation. While the exact mechanism underlying the transgenerational consistency of DRD4 methylation remains to be elucidated, this study shows that epigenetic mechanisms are involved in shaping natural variation in personality traits. We outline how this first finding provides a basis for investigating the epigenetic contribution to personality traits in natural systems and its subsequent role for understanding the ecology and evolution of behavioural consistency.
Collapse
Affiliation(s)
- Eveline C Verhulst
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - A Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Mathijs V Zwier
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, P.O. Box 196, 9700 AD, Groningen, The Netherlands
| | - Samuel P Caro
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
5
|
Riyahi S, Sánchez-Delgado M, Calafell F, Monk D, Senar JC. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 2015; 10:516-25. [PMID: 25933062 DOI: 10.1080/15592294.2015.1046027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA methylation is one of the main epigenetic mechanisms that can regulate gene expression and is an important means for creating phenotypic variation. In the present study, we performed methylation profiling of 2 candidate genes for personality traits, namely DRD4 and SERT, in the great tit Parus major to ascertain whether personality traits and behavior within different habitats have evolved with the aid of epigenetic variation. We applied bisulphite PCR and strand-specific sequencing to determine the methylation profile of the CpG dinucleotides in the DRD4 and SERT promoters and also in the CpG island overlapping DRD4 exon 3. Furthermore, we performed pyrosequencing to quantify the total methylation levels at each CpG location. Our results indicated that methylation was ∼1-4% higher in urban than in forest birds, for all loci and tissues analyzed, suggesting that this epigenetic modification is influenced by environmental conditions. Screening of genomic DNA sequence revealed that the SERT promoter is CpG poor region. The methylation at a single CpG dinucleotide located 288 bp from the transcription start site was related to exploration score in urban birds. In addition, the genotypes of the SERT polymorphism SNP234 located within the minimal promoter were significantly correlated with novelty seeking behavior in captivity, with the allele increasing this behavior being more frequent in urban birds. As a conclusion, it seems that both genetic and methylation variability of the SERT gene have an important role in shaping personality traits in great tits, whereas genetic and methylation variation at the DRD4 gene is not strongly involved in behavior and personality traits.
Collapse
Affiliation(s)
- Sepand Riyahi
- a Evolutionary Ecology Associate Research Unit (CSIC); Natural History Museum of Barcelona ; Barcelona , Spain
| | | | | | | | | |
Collapse
|
6
|
The Present Status of Available Genetic Information for Avian Species Distributing in Japan and on the List of “Nationally Endangered Species of Wild Fauna and Flora”. J Poult Sci 2015. [DOI: 10.2141/jpsa.0150015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Komiyama T, Iwama H, Osada N, Nakamura Y, Kobayashi H, Tateno Y, Gojobori T. Dopamine receptor genes and evolutionary differentiation in the domestication of fighting cocks and long-crowing chickens. PLoS One 2014; 9:e101778. [PMID: 25078403 PMCID: PMC4117491 DOI: 10.1371/journal.pone.0101778] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022] Open
Abstract
The chicken domestication process represents a typical model of artificial selection, and gives significant insight into the general understanding of the influence of artificial selection on recognizable phenotypes. Two Japanese domesticated chicken varieties, the fighting cock (Shamo) and the long-crowing chicken (Naganakidori), have been selectively bred for dramatically different phenotypes. The former has been selected exclusively for aggressiveness and the latter for long crowing with an obedient sitting posture. To understand the particular mechanism behind these genetic changes during domestication, we investigated the degree of genetic differentiation in the aforementioned chickens, focusing on dopamine receptor D2, D3, and D4 genes. We studied other ornamental chickens such as Chabo chickens as a reference for comparison. When genetic differentiation was measured by an index of nucleotide differentiation (NST) newly devised in this study, we found that the NST value of DRD4 for Shamo (0.072) was distinctively larger than those of the other genes among the three populations, suggesting that aggressiveness has been selected for in Shamo by collecting a variety of single nucleotide polymorphisms. In addition, we found that in DRD4 in Naganakidori, there is a deletion variant of one proline at the 24th residue in the repeat of nine prolines of exon 1. We thus conclude that artificial selection has operated on these different kinds of genetic variation in the DRD4 genes of Shamo and Naganakidori so strongly that the two domesticated varieties have differentiated to obtain their present opposite features in a relatively short period of time.
Collapse
Affiliation(s)
- Tomoyoshi Komiyama
- Department of Clinical Pharmacology, Tokai University School of Medicine, Shimokasuya, Isehara, Kanagawa, Japan
- * E-mail: (TK); (YT); (TG)
| | - Hisakazu Iwama
- Kagawa University, Life Science Research Center, Kagawa, Japan
| | - Naoki Osada
- National Institute of Genetics, Shizuoka, Japan
| | - Yoji Nakamura
- National Research Institute of Fisheries Science, Fisheries Research Agency, Kanagawa, Japan
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, Shimokasuya, Isehara, Kanagawa, Japan
| | - Yoshio Tateno
- School of New Biology, Daegu Gyoungbuk Institute of Science and Technology, Daegu, Republic of Korea
- * E-mail: (TK); (YT); (TG)
| | - Takashi Gojobori
- National Institute of Genetics, Shizuoka, Japan
- SOKENDAI, Department of Genetics, Graduate School of Advanced Studies, Hayama, Kanagawa, Japan
- CBRC, BESE, King Abdullah University of Science and Technology, Thuwal, KSA
- * E-mail: (TK); (YT); (TG)
| |
Collapse
|
8
|
Garamszegi LZ, Mueller JC, Markó G, Szász E, Zsebők S, Herczeg G, Eens M, Török J. The relationship between DRD4 polymorphisms and phenotypic correlations of behaviors in the collared flycatcher. Ecol Evol 2014; 4:1466-79. [PMID: 24834341 PMCID: PMC4020704 DOI: 10.1002/ece3.1041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that the genetic architecture of exploration behavior includes the dopamine receptor D4 gene (DRD4). Such a link implies that the within-individual consistency in the same behavior has a genetic basis. Behavioral consistency is also prevalent in the form of between-individual correlation of functionally different behaviors; thus, the relationship between DRD4 polymorphism and exploration may also be manifested for other behaviors. Here, in a Hungarian population of the collared flycatcher, Ficedula albicollis, we investigate how males with distinct DRD4 genotypes differ in the consistent elements of their behavioral displays during the courtship period. In completely natural conditions, we assayed novelty avoidance, aggression and risk-taking, traits that were previously shown repeatable over time and correlate with each other, suggesting that they could have a common mechanistic basis. We identified two single-nucleotide polymorphisms (SNP554 and SNP764) in the exon 3 of the DRD4 gene by sequencing a subsample, then we screened 202 individuals of both sexes for these SNPs. Focusing on the genotypic variation in courting males, we found that “AC” heterozygote individuals at the SNP764 take lower risk than the most common “AA” homozygotes (the “CC” homozygotes were not represented in our subsample of males). We also found a considerable effect size for the relationship between SNP554 polymorphism and novelty avoidance. Therefore, in addition to exploration, DRD4 polymorphisms may also be associated with the regulation of behaviors that may incur fear or stress. Moreover, polymorphisms at the two SNPs were not independent indicating a potential role for genetic constraints or another functional link, which may partially explain behavioral correlations.
Collapse
Affiliation(s)
- László Z Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC Seville, Spain
| | - Jakob C Mueller
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology Seewiesen, Germany
| | - Gábor Markó
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary ; Department of Plant Pathology, Corvinus University of Budapest Budapest, Hungary ; Ecology Research Group, Hungarian Academy of Sciences, Hungarian Natural History Museum Budapest, Hungary
| | - Eszter Szász
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| | - Sándor Zsebők
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary ; Ecology Research Group, Hungarian Academy of Sciences, Hungarian Natural History Museum Budapest, Hungary ; Université Paris-Sud, Centre de Neurosciences Paris-Sud UMR 8195, Orsay, France
| | - Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| | - Marcel Eens
- Ethology Group, Department of Biology, University of Antwerp Wilrijk, Belgium
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| |
Collapse
|
9
|
Mueller JC, Korsten P, Hermannstaedter C, Feulner T, Dingemanse NJ, Matthysen E, van Oers K, van Overveld T, Patrick SC, Quinn JL, Riemenschneider M, Tinbergen JM, Kempenaers B. Haplotype structure, adaptive history and associations with exploratory behaviour of theDRD4gene region in four great tit (Parus major) populations. Mol Ecol 2013; 22:2797-809. [DOI: 10.1111/mec.12282] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Jakob C. Mueller
- Department of Behavioural Ecology & Evolutionary Genetics; Max Planck Institute for Ornithology; Seewiesen Germany
| | - Peter Korsten
- Department of Behavioural Ecology & Evolutionary Genetics; Max Planck Institute for Ornithology; Seewiesen Germany
| | - Christine Hermannstaedter
- Department of Behavioural Ecology & Evolutionary Genetics; Max Planck Institute for Ornithology; Seewiesen Germany
| | - Thomas Feulner
- Clinic for Psychiatry and Psychotherapy; University of Saarland; Homburg/Saar Germany
| | - Niels J. Dingemanse
- Research Group “Evolutionary Ecology of Variation”; Max Planck Institute for Ornithology; Seewiesen Germany
- Department Biologie II; Ludwig Maximilians University of Munich; Planegg-Martinsried Germany
| | - Erik Matthysen
- Evolutionary Ecology Group; Department of Biology; University of Antwerp; Wilrijk Belgium
| | - Kees van Oers
- Department of Animal Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Thijs van Overveld
- Evolutionary Ecology Group; Department of Biology; University of Antwerp; Wilrijk Belgium
| | - Samantha C. Patrick
- Edward Grey Institute; Department of Zoology; University of Oxford; Oxford UK
| | - John L. Quinn
- Edward Grey Institute; Department of Zoology; University of Oxford; Oxford UK
| | | | - Joost M. Tinbergen
- Animal Ecology Group; University of Groningen; Groningen The Netherlands
| | - Bart Kempenaers
- Department of Behavioural Ecology & Evolutionary Genetics; Max Planck Institute for Ornithology; Seewiesen Germany
| |
Collapse
|
10
|
Atwell JW, Cardoso GC, Whittaker DJ, Campbell-Nelson S, Robertson KW, Ketterson ED. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. ACTA ACUST UNITED AC 2012; 23:960-969. [PMID: 22936840 DOI: 10.1093/beheco/ars059] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/11/2022]
Abstract
Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat.
Collapse
Affiliation(s)
- Jonathan W Atwell
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abe H, Watanabe Y, Inoue-Murayama M. Genetic variation in the C-terminal domain of arginine vasotocin receptor in avian species. Gene 2011; 494:174-80. [PMID: 22197655 DOI: 10.1016/j.gene.2011.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/04/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
Arginine vasotocin (AVT) is a neurohypophysial hormone that plays an essential role in various social behaviours. We investigated the degree of polymorphisms in the C-terminal domain of the AVT V2-type receptor (AVT2R) among avian species to determine the mechanism by which genetic polymorphisms in the neuropeptide receptor may contribute to different levels of signal transduction. In passerine birds, AVT2R was characterised by 2 variable regions, both of which were managed by insertion/deletion (indel); however, indels were rarely found in other avian taxa. The presence or absence of deletions in passerines largely affected the properties of the predicted palmitoylation sites at the proximal part of the C-terminal tail. Moreover, we detected intraspecific polymorphisms in estrildid finches based on the number of tri-amino acid (GHQ/EHQ/EHR) repeats in another variable region. Our results indicate that amino acid substitutions and length variation at the C-terminus may impact subsequent signal transduction and affect behavioural traits in wild birds.
Collapse
Affiliation(s)
- Hideaki Abe
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto,606-8203, Japan
| | | | | |
Collapse
|