1
|
Cao L, Chen P, Hou X, Ma J, Yang N, Lu Y, Huang H. rDNA and mtDNA analysis for the identification of genetic characters in the hybrid grouper derived from hybridization of Cromileptes altivelis (female) × Epinephelus lanceolatus (male). BMC Genom Data 2024; 25:5. [PMID: 38216865 PMCID: PMC10787421 DOI: 10.1186/s12863-023-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Hybridization is a useful strategy to produce offspring with more desirable phenotypic characteristics than those of parents. The hybrid grouper derived from the cross of Cromileptes altivelis (♀, 2n = 48) with Epinephelus lanceolatus (♂, 2n = 48) exhibits improved growth compared with its female parent, which makes it valuable to aquaculture. However, the genetic traits of the hybrid grouper are poorly understood. RESULTS The observations showed that the hybrid grouper was diploid (2n = 48) and displayed intermediate morphology with the parent's measurable characteristics. The ribosomal DNA (rDNA) and mitochondria DNA (mtDNA) were characterized at molecular and phylogenetic level. High similarity and low genetic distance of 5S rDNA and mtDNA sequences between the hybrid grouper and C. altivelis showed that the hybrid grouper had a closer genetic relationship with female parents. The reconstructed phylogenetic tree based on COI gene and D-loop region of mtDNA recovered that mtDNA was maternally inherited in the hybrid grouper. Additionally, the DNA methylation level of 5S rDNA intergenic spacers (IGS) sequence was tested in here. The results showed that the DNA methylation status of the hybrid grouper was significantly lower than that of C. altivelis. CONCLUSION Results of this study provide important data on the genetic characteristics of the hybrid derived from the cross of C. altivelis and E. lanceolatus, and contribute the knowledge of both evolution and marine fish breeding.
Collapse
Affiliation(s)
- Liu Cao
- Yazhou Bay Innovation Institute, Sanya, 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Pan Chen
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Xingrong Hou
- Yazhou Bay Innovation Institute, Sanya, 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Sanya, 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Ning Yang
- Yazhou Bay Innovation Institute, Sanya, 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yan Lu
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Sanya, 572022, China.
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China.
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China.
- Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
2
|
Azambuja M, Nogaroto V, Moreira-Filho O, Vicari MR. U2 and U4 snDNA Comparative Chromosomal Mapping in the Neotropical Fish Genera Apareiodon and Parodon (Characiformes: Parodontidae). Zebrafish 2023; 20:221-228. [PMID: 37797225 DOI: 10.1089/zeb.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Small nuclear DNA (snDNA) are valuable cytogenetic markers for comparative studies in chromosome evolution because different distribution patterns were found among species. Parodontidae, a Neotropical fish family, is known to have female heterogametic sex chromosome systems in some species. The U2 and U4 snDNA sites have been found to be involved in Z and W chromosome differentiation in Apareiodon sp., Apareiodon affinis, and Parodon hilarii. However, few studies have evaluated snDNA sites as propulsors of chromosome diversification among closely related fish species. In this study, we investigated the distribution of U2 and U4 snDNA clusters in the chromosomes of 10 populations/species belonging to Apareiodon and Parodon, aiming to identify chromosomal homeologies or diversification. In situ localization data revealed a submetacentric pair carrying the U2 snDNA site among the populations/species analyzed. Furthermore, all studied species demonstrated homeology in the location of U4 snDNA cluster in the proximal region of metacentric pair 1, besides an additional signal showing up with a divergence in Apareiodon. Comparative chromosomal mapping of U4 snDNA also helped to reinforce the proposal of the ZZ/ZW1W2 sex chromosome system origin in an A. affinis population. According to cytogenetic data, the study corroborates the diversification in Parodontidae paired species with uncertain taxonomy.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
3
|
Shibata K, Kuroda M, Yamaha E, Arai K, Fujimoto T. Nucleotide Sequence and Chromosome Mapping of 5S Ribosomal DNA from the Dojo Loach, Misgurnus anguillicaudatus. Cytogenet Genome Res 2023; 162:570-578. [PMID: 36682354 DOI: 10.1159/000529150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
There are 2 genetically divergent groups in the dojo loach Misgurnus anguillicaudatus: A and B. Although most wild-type diploids reproduce sexually, clonal diploids (clonal loach) reproduce gynogenetically in certain areas. Clonal loaches produce unreduced isogenic eggs by premeiotic endomitosis, and such diploid eggs develop gynogenetically following activation by the sperm of sympatric wild-type diploids. These clonal loaches have presumably arisen from past hybridization events between 2 different ancestors. The genomic differences between these 2 groups have not been completely elucidated. Thus, new genetic and cytogenetic markers are required to distinguish between these 2 groups. Here, we compared the 5S rDNA region to develop markers for the identification of different dojo loach groups. The nontranscribed sequence (NTS) of the 5S rDNA was highly polymorphic and group-specific. NTSs were found in clades of 2 different groups in clonal loaches. In contrast, we did not find any group-specific sequences in the coding region of the 5S rRNA gene. Sequences were located near the centromere of the short arm of the largest submetacentric chromosomes in groups A and B and clonal loaches. Thus, the 5S rDNA of the dojo loach is conserved at the chromosomal location. Whereas, the sequences of the NTS regions evolved group-specifically in the dojo loach, with the sequences of both groups being conserved in clonal loaches.
Collapse
Affiliation(s)
- Kiko Shibata
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Masamichi Kuroda
- Department of Ocean and Fisheries Sciences, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | - Etsuro Yamaha
- Nanae Freshwater Station, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Japan
| | - Katsutoshi Arai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | |
Collapse
|
4
|
Azambuja M, Orane Schemberger M, Nogaroto V, Moreira-Filho O, Martins C, Ricardo Vicari M. Major and minor U small nuclear RNAs genes characterization in a neotropical fish genome: Chromosomal remodeling and repeat units dispersion in Parodontidae. Gene 2022; 826:146459. [PMID: 35358649 DOI: 10.1016/j.gene.2022.146459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
In association with many proteins, small nuclear RNAs (snRNAs) organize the spliceosomes that play a significant role in processing precursor mRNAs during gene expression. According to snRNAs genic arrangements, two kinds of spliceosomes (major and minor) can be organized into eukaryotic cells. Although in situ localization of U1 and U2 snDNAs have been performed in fish karyotypes, studies with genomic characterization and functionality of U snRNAs integrated into chromosomal changes on Teleostei are still scarce. This study aimed to achieve a genomic characterization of the U snRNAs genes in Apareiodon sp. (2n = 54, ZZ/ZW), apply these data to recognize functional/defective copies, and map chromosomal changes involving snDNAs in Parodontidae species karyotype diversification. Nine snRNA multigene families (U1, U2, U4, U5, U6, U11, U12, U4atac and U6atac) arranged in putatively functional copies in the genome were analyzed. Proximal Sequence Elements (PSE) and TATA-box promoters occurrence, besides an entire transcribed region and conserved secondary structures, qualify them for spliceosome activity. In addition, several defective copies or pseudogenes were identified for the snRNAs that make up the major spliceosome. In situ localization of snDNAs in five species of Parodontidae demonstrated that U1, U2, and U4 snDNAs were involved in chromosomal location changes or units dispersion. The U snRNAs defective/pseudogenes units dispersion could be favored by the probable occurrence of active retrotransposition enzymes in the Apareiodon genome. The U2 and U4 snDNAs sites were involved in independent events in the differentiation of sex chromosomes among Parodontidae lineages. The study characterized U snRNA genes that compose major and minor spliceosomes in the Apareiodon sp. genome and proposes that their defective copies trigger chromosome differentiation and diversification events in Parodontidae.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil.
| | - Michelle Orane Schemberger
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil.
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, 18618-689 Botucatu, São Paulo, Brazil.
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil; Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
5
|
Ramírez D, Rodríguez ME, Cross I, Arias-Pérez A, Merlo MA, Anaya M, Portela-Bens S, Martínez P, Robles F, Ruiz-Rejón C, Rebordinos L. Integration of Maps Enables a Cytogenomics Analysis of the Complete Karyotype in Solea senegalensis. Int J Mol Sci 2022; 23:ijms23105353. [PMID: 35628170 PMCID: PMC9140517 DOI: 10.3390/ijms23105353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
The Pleuronectiformes order, which includes several commercially-important species, has undergone extensive chromosome evolution. One of these species is Solea senegalensis, a flatfish with 2n = 42 chromosomes. In this study, a cytogenomics approach and integration with previous maps was applied to characterize the karyotype of the species. Synteny analysis of S. senegalensis was carried out using two flatfish as a reference: Cynoglossus semilaevis and Scophthalmus maximus. Most S. senegalensis chromosomes (or chromosome arms for metacentrics and submetacentrics) showed a one-to-one macrosyntenic pattern with the other two species. In addition, we studied how repetitive sequences could have played a role in the evolution of S. senegalensis bi-armed (3, and 5–9) and acrocentric (11, 12 and 16) chromosomes, which showed the highest rearrangements compared with the reference species. A higher abundance of TEs (Transposable Elements) and other repeated elements was observed adjacent to telomeric regions on chromosomes 3, 7, 9 and 16. However, on chromosome 11, a greater abundance of DNA transposons was detected in interstitial BACs. This chromosome is syntenic with several chromosomes of the other two flatfish species, suggesting rearrangements during its evolution. A similar situation was also found on chromosome 16 (for microsatellites and low complexity sequences), but not for TEs (retroelements and DNA transposons). These differences in the distribution and abundance of repetitive elements in chromosomes that have undergone remodeling processes during the course of evolution also suggest a possible role for simple repeat sequences in rearranged regions.
Collapse
Affiliation(s)
- Daniel Ramírez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - María Esther Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Ismael Cross
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Alberto Arias-Pérez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Manuel Alejandro Merlo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Marco Anaya
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Silvia Portela-Bens
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Universidad de Santiago de Compostela, 27002 Lugo, Spain;
| | - Francisca Robles
- Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; (F.R.); (C.R.-R.)
| | - Carmelo Ruiz-Rejón
- Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; (F.R.); (C.R.-R.)
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (M.E.R.); (I.C.); (A.A.-P.); (M.A.M.); (M.A.); (S.P.-B.)
- Correspondence: ; Tel.: +34-956-016181
| |
Collapse
|
6
|
Rodrigues PP, Machado MDA, Pety AM, Silva DDS, de Souza ACP, Pieczarka JC, Nagamachi CY. Archolaemus janeae (Gymnotiformes, Teleostei): First insights into karyotype and repetitive DNA distribution in two populations of the Amazon. Ecol Evol 2021; 11:15468-15476. [PMID: 34824768 PMCID: PMC8601878 DOI: 10.1002/ece3.8092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/19/2021] [Accepted: 08/24/2021] [Indexed: 12/02/2022] Open
Abstract
Archolaemus, one of the five genera of Neotropical freshwater fish of the family Sternopygidae (Gymnotiformes), was long considered a monotypic genus represented by Archolaemus blax. Currently, it consists of six species, most of them occurring in the Amazon region. There are no cytogenetic data for species of this genus. In the present study, we used classical cytogenetics (conventional staining and C-banding) and molecular cytogenetics (probes of telomeric sequences and multigenic families 18S rDNA, 5S rDNA, and U2 snDNA) to study the karyotype of Archolaemus janeae from Xingu and Tapajós rivers in the state of Pará (Brazil). The results showed that the two populations have identical karyotypes with 46 chromosomes: four submetacentric and 42 acrocentric (2n = 46; 4m/sm + 42a). Constitutive heterochromatin occurs in the centromeric region of all chromosomes, in addition to small bands in the interstitial and distal regions of some pairs. The 18S rDNA occurs in the distal region of the short arm of pair 2; the 5S rDNA occurs in five chromosome pairs; and the U2 snDNA sequence occurs in chromosome pairs 3, 6, and 13. No interstitial telomeric sequence was observed. These results show karyotypic similarity between the studied populations suggesting the existence of a single species and are of great importance as a reference for future cytotaxonomic studies of the genus.
Collapse
Affiliation(s)
- Paula Pinto Rodrigues
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| | - Milla de Andrade Machado
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| | - Ananda Marques Pety
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| | | | | | - Julio Cesar Pieczarka
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de CitogenéticaCentro de Estudos Avançados da BiodiversidadeInstituto de Ciências BiológicasUniversidade Federal do Pará (UFPA)BelémBrazil
| |
Collapse
|
7
|
Fernandes CA, Paiz LM, Piscor D, Gavazzoni M, Carvalho LABD, Portela-Castro ALDB, Margarido VP. Chromosomal Diversity in Two Allopatric Populations of Farlowella hahni Meinken 1937 (Teleostei: Siluriformes): Cytogenetics and Cytochrome b Analyses. Zebrafish 2021; 18:66-72. [PMID: 33538653 DOI: 10.1089/zeb.2020.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Farlowella is the second richest genus in Loricariinae, broadly distributed in freshwater streams and rivers of South America. In this article, we aimed to expand on the cytogenetic and molecular data available for two allopatric populations of Farlowella hahni. Both populations had diploid chromosome number 58, but with karyotype differences, indicative of chromosomal rearrangements. C-banding showed large heterochromatic blocks at telomeric regions in acrocentric chromosomes in both populations. Fluorescence in situ hybridization (FISH) revealed a single 18S rDNA site in both populations and a single 5S rDNA site for individuals from lower Paraná River basin (native region) and multiple 5S rDNA sites for individuals from upper Paraná River basin (non-native region). Mitochondrial sequence analyses did not separate the two F. hahni populations. The cytogenetic and molecular data obtained are relevant in a preliminary study and suggested the existence of cryptic diversity and the hypothesis that at least two Farlowella lineages may coexist in the Paraná basin.
Collapse
Affiliation(s)
- Carlos Alexandre Fernandes
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil.,Programa de Pós-Graduação em Biologia Comparada, Universidade Estadual de Maringá, Maringá, Brazil
| | - Leonardo Marcel Paiz
- Programa de Pós-Graduação em Biologia Comparada, Universidade Estadual de Maringá, Maringá, Brazil.,Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Diovani Piscor
- Universidade Estadual de Mato Grosso do Sul, Unidade Universitária de Mundo Novo, Dourados, Brazil
| | - Mariane Gavazzoni
- Programa de Pós-Graduação em Biologia Comparada, Universidade Estadual de Maringá, Maringá, Brazil.,Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | | | | | - Vladimir Pavan Margarido
- Programa de Pós-Graduação em Biologia Comparada, Universidade Estadual de Maringá, Maringá, Brazil.,Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| |
Collapse
|
8
|
Bueno GDP, Gatto KP, Gazolla CB, Leivas PT, Struett MM, Moura M, Bruschi DP. Cytogenetic characterization and mapping of the repetitive DNAs in Cycloramphus bolitoglossus (Werner, 1897): More clues for the chromosome evolution in the genus Cycloramphus (Anura, Cycloramphidae). PLoS One 2021; 16:e0245128. [PMID: 33439901 PMCID: PMC7806164 DOI: 10.1371/journal.pone.0245128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/22/2020] [Indexed: 01/13/2023] Open
Abstract
Cycloramphus bolitoglossus (Werner, 1897) is a rare species with a low population density in the Serra do Mar region of Paraná and Santa Catarina, in southern Brazil. Currently, it has been assigned to the Near Threatened (NT) category in the Brazilian List of Endangered Animal Species. Here, we described the karyotype of this species for the first time and investigated the patterns of some repetitive DNA classes in the chromosomes using molecular cytogenetic approaches. We isolated, sequenced and mapped the 5S rDNA and the satellite DNA PcP190 of C. bolitoglossus, as well as mapped the telomeric sequences and seven microsatellites motifies [(GA)15, (CA)15, (GACA)4, (GATA)8, (CAG)10, (CGC)10, and (GAA)]10. Cycloramphus bolitoglossus has 2n = 26 chromosomes and a fundamental number (FN) equal to 52, with a highly conserved karyotype compared to other genus members. Comparative cytogenetic under the phylogenetic context of genus allowed evolutionary interpretations of the morphological changes in the homologs of pairs 1, 3, and 6 along with the evolutionary history of Cycloramphus. Two subtypes of 5S rDNA type II were isolated in C. bolitoglossus genome, and several comparative analysis suggests mixed effects of concerted and birth-and-death evolution acting in this repetitive DNA. The 5S rDNA II subtype "a" and "b" was mapped on chromosome 1. However, their different position along chromosome 1 provide an excellent chromosome marker for future studies. PcP190 satellite DNA, already reported for species of the families Hylidae, Hylodidae, Leptodactylidae, and Odontophrynidae, is scattered throughout the C. bolitoglossus genome, and even non-heterochromatic regions showed hybridization signals using the PcP190 probe. Molecular analysis suggests that PcP190 satellite DNA exhibit a high-level of homogenization of this sequence in the genome of C. bolitoglossus. The PcP190 satDNA from C. bolitoglossus represents a novel sequence group, compared to other anurans, based on its hypervariable region. Overall, the present data on repetitive DNA sequences showed pseudogenization evidence and corroborated the hypothesis of the emergence of satDNA from rDNA 5S clusters. These two arguments that reinforced the importance of the birth-and-death evolutionary model to explain 5S rDNA patterns found in anuran genomes.
Collapse
Affiliation(s)
- Gislayne de Paula Bueno
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Kaleb Pretto Gatto
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista, (UNESP), Rio Claro, São Paulo, Brazil
| | - Camilla Borges Gazolla
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Peterson T. Leivas
- Curso de Ciências Biológicas, Universidade Positivo (UP), Curitiba, Paraná, Brazil
| | - Michelle M. Struett
- Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Maurício Moura
- Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
9
|
Coluccia E, Deidda F, Lobina C, Melis R, Porcu C, Agus B, Salvadori S. Chromosome Mapping of 5S Ribosomal Genes in Indo-Pacific and Atlantic Muraenidae: Comparative Analysis by Dual Colour Fluorescence In Situ Hybridisation. Genes (Basel) 2020; 11:genes11111319. [PMID: 33172170 PMCID: PMC7694744 DOI: 10.3390/genes11111319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
The Muraenidae is one of the largest and most complex anguilliform families. Despite their abundance and important ecological roles, morays are little studied, especially cytogenetically, and both their phylogenetic relationships and the taxonomy of their genera are controversial. With the aim of extending the karyology of this fish group, the chromosomal mapping of the 5S ribosomal gene family was performed on seven species belonging to the genera Muraena and Gymnothorax from both the Atlantic and Pacific oceans. Fluorescence in situ hybridisation (FISH) experiments were realized using species-specific 5S rDNA probes; in addition, two-colour FISH was performed to investigate the possible association with the 45S ribosomal gene family. Multiple 5S rDNA clusters, located either in species-specific or in possibly homoeologous chromosomes, were found. Either a syntenic or different chromosomal location of the two ribosomal genes was detected. Our results revealed variability in the number and location of 5S rDNA clusters and confirmed a substantial conservation of the number and location of the 45S rDNA.
Collapse
|
10
|
Cao L, Zhao C, Wang C, Qin H, Qin Q, Tao M, Zhang C, Zhao R, Liu S. Evolutionary dynamics of 18S and 5S rDNA in autotriploid Carassius auratus. Gene 2020; 737:144433. [PMID: 32014563 DOI: 10.1016/j.gene.2020.144433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The Carassius auratus (crucian carp) complex of the Dongting water system exhibits coexistence of diploid and triploid forms. As reported, triploid C. auratus is autotriploid origin. Ribosomal DNA (rDNA) with evolutionary conservation is widely used to study polyploidization. Here, we investigated genomic and transcribed rDNA sequences (18S and 5S) in diploid (2nCC, 2n = 100) and triploid (3nCC, 3n = 150) C. auratus. The results showed that the genetic traits and expression of 18S and 5S rDNA from 2nCC individuals were identified in 3nCC individuals. Moreover, pseudogenization of rDNA (18S and 5S) sequences were also observed in both 2nCC and 3nCC individuals, but expression of these variants was not detected. Based on the transcribed rDNA consensus sequence between 2nCC and 3nCC individuals, the functional secondary structures of 18S rRNA (expansion segments, ES6S) and 5S rRNA were predicted. These data demonstrated that complex evolutionary dynamics existed in the rDNA family of C. auratus. The evolutionary conservation of rDNA revealed that autotriploidization could not induce the divergence in Carassius taxa of the Dongting water system. These observations will expand our knowledge of the evolutionary dynamics of the rDNA family in vertebrates.
Collapse
Affiliation(s)
- Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China.
| |
Collapse
|
11
|
Piscor D, Paiz LM, Baumgärtner L, Cerqueira FJ, Fernandes CA, Lui RL, Parise-Maltempi PP, Margarido VP. Chromosomal mapping of repetitive sequences in Hyphessobrycon eques (Characiformes, Characidae): a special case of the spreading of 5S rDNA clusters in a genome. Genetica 2020; 148:25-32. [PMID: 31997050 DOI: 10.1007/s10709-020-00086-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 01/23/2023]
Abstract
Cytogenetic data showed a variation in diploid chromosome number in the genus Hyphessobrycon ranging from 2n = 46 to 52, and studies involving repetitive DNA sequences are scarce in representatives of this genus. The purpose of this paper was the chromosomal mapping of repetitive sequences (rDNA, histone genes, U snDNA and microsatellites) and investigation of the amplification of 5S rDNA clusters in the Hyphessobrycon eques genome. Two H. eques populations displayed 2n = 52 chromosomes, with the acrocentric pair No. 24 bearing Ag-NORs corresponding with CMA3+/DAPI-. FISH with a 18S rDNA probe identified the NORs on the short (p) arms of the acrocentric pairs Nos. 22 and 24. The 5S rDNA probe visualized signals on almost all chromosomes in genomes of individuals from both populations (40 signals); FISH with H3 histone probe identified two chromosome pairs, with the pericentromeric location of signals; FISH with a U2 snDNA probe identified one chromosome pair bearing signals, on the interstitial chromosomal region. The mononucleotide (A), dinucleotide (CA) and tetranucleotide (GATA) repeats were observed on the centromeric/pericentromeric and/or terminal positions of all chromosomes, while the trinucleotide (CAG) repeat showed signals on few chromosomes. Molecular analysis of 5S rDNA and non-transcribed spacers (NTS) showed microsatellites (GATA and A repeats) and a fragment of retrotransposon (SINE3/5S-Sauria) inside the sequences. This study expanded the available cytogenetic data for H. eques and demonstrated to the dispersion of the 5S rDNA sequences on almost all chromosomes.
Collapse
Affiliation(s)
- Diovani Piscor
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil. .,Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, MS, ZIP: 79980-000, Brazil.
| | - Leonardo Marcel Paiz
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Lucas Baumgärtner
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Fiorindo José Cerqueira
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Carlos Alexandre Fernandes
- Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, MS, ZIP: 79980-000, Brazil
| | - Roberto Laridondo Lui
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Av. 24A, 1515, Rio Claro, SP, ZIP: 13506-900, Brazil
| | - Vladimir Pavan Margarido
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| |
Collapse
|
12
|
A novel ZZ/ZW chromosome morphology type in Eigenmannia virescens (Gymnotiformes: Sternopygidae) from upper Paraná River basin. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting. Genes (Basel) 2018; 9:genes9040181. [PMID: 29584697 PMCID: PMC5924523 DOI: 10.3390/genes9040181] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus, which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds.
Collapse
|
14
|
Uncovering the molecular organization of unusual highly scattered 5S rDNA: The case of Chariesterus armatus (Heteroptera). Gene 2018; 646:153-158. [DOI: 10.1016/j.gene.2017.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
15
|
Ye L, Zhang C, Tang X, Chen Y, Liu S. Variations in 5S rDNAs in diploid and tetraploid offspring of red crucian carp × common carp. BMC Genet 2017; 18:75. [PMID: 28789633 PMCID: PMC5549377 DOI: 10.1186/s12863-017-0542-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The allotetraploid hybrid fish (4nAT) that was created in a previous study through an intergeneric cross between red crucian carp (Carassius auratus red var., ♀) and common carp (Cyprinus carpio L., ♂) provided an excellent platform to investigate the effect of hybridization and polyploidization on the evolution of 5S rDNA. The 5S rDNAs of paternal common carp were made up of a coding sequence (CDS) and a non-transcribed spacer (NTS) unit, and while the 5S rDNAs of maternal red crucian carp contained a CDS and a NTS unit, they also contained a variable number of interposed regions (IPRs). The CDSs of the 5S rDNAs in both parental fishes were conserved, while their NTS units seemed to have been subjected to rapid evolution. RESULTS The diploid hybrid 2nF1 inherited all the types of 5S rDNAs in both progenitors and there were no signs of homeologous recombination in the 5S rDNAs of 2nF1 by sequencing of PCR products. We obtained two segments of 5S rDNA with a total length of 16,457 bp from allotetraploid offspring 4nAT through bacterial artificial chromosome (BAC) sequencing. Using this sequence together with the 5S rDNA sequences amplified from the genomic DNA of 4nAT, we deduced that the 5S rDNAs of 4nAT might be inherited from the maternal progenitor red crucian carp. Additionally, the IPRs in the 5S rDNAs of 4nAT contained A-repeats and TA-repeats, which was not the case for the IPRs in the 5S rDNAs of 2nF1. We also detected two signals of a 200-bp fragment of 5S rDNA in the chromosomes of parental progenitors and hybrid progenies by fluorescence in situ hybridization (FISH). CONCLUSIONS We deduced that during the evolution of 5S rDNAs in different ploidy hybrid fishes, interlocus gene conversion events and tandem repeat insertion events might occurred in the process of polyploidization. This study provided new insights into the relationship among the evolution of 5S rDNAs, hybridization and polyploidization, which were significant in clarifying the genome evolution of polyploid fish.
Collapse
Affiliation(s)
- Lihai Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaojun Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yiyi Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
16
|
dos Santos MDS, Kretschmer R, Frankl-Vilches C, Bakker A, Gahr M, O´Brien PCM, Ferguson-Smith MA, de Oliveira EHC. Comparative Cytogenetics between Two Important Songbird, Models: The Zebra Finch and the Canary. PLoS One 2017; 12:e0170997. [PMID: 28129381 PMCID: PMC5271350 DOI: 10.1371/journal.pone.0170997] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/14/2017] [Indexed: 11/18/2022] Open
Abstract
Songbird species (order Passeriformes, suborder Oscines) are important models in various experimental fields spanning behavioural genomics to neurobiology. Although the genomes of some songbird species were sequenced recently, the chromosomal organization of these species is mostly unknown. Here we focused on the two most studied songbird species in neuroscience, the zebra finch (Taeniopygia guttata) and the canary (Serinus canaria). In order to clarify these issues and also to integrate chromosome data with their assembled genomes, we used classical and molecular cytogenetics in both zebra finch and canary to define their chromosomal homology, localization of heterochromatic blocks and distribution of rDNA clusters. We confirmed the same diploid number (2n = 80) in both species, as previously reported. FISH experiments confirmed the occurrence of multiple paracentric and pericentric inversions previously found in other species of Passeriformes, providing a cytogenetic signature for this order, and corroborating data from in silico analyses. Additionally, compared to other Passeriformes, we detected differences in the zebra finch karyotype concerning the morphology of some chromosomes, in the distribution of 5S rDNA clusters, and an inversion in chromosome 1.
Collapse
Affiliation(s)
| | - Rafael Kretschmer
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Antje Bakker
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Patricia C. M. O´Brien
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Edivaldo H. C. de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil
- Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
17
|
Yano CF, Bertollo LAC, Rebordinos L, Merlo MA, Liehr T, Portela-Bens S, Cioffi MDB. Evolutionary Dynamics of rDNAs and U2 Small Nuclear DNAs in Triportheus (Characiformes, Triportheidae): High Variability and Particular Syntenic Organization. Zebrafish 2017; 14:146-154. [PMID: 28051362 DOI: 10.1089/zeb.2016.1351] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multigene families correspond to a group of genes tandemly repeated, showing enormous diversity in both number of units and genomic organization. In fishes, unlike rDNAs that have been well explored in cytogenetic studies, U2 small nuclear RNA (snRNA) genes are poorly investigated concerning their chromosomal localization. All Triportheus species (Characiformes, Triportheidae) studied so far carry a ZZ/ZW sex chromosomes system, where the W chromosome contains a huge 18S rDNA cistron. In some species the syntenic organization of rDNAs on autosomes was also verified. To explore this particular organization, we performed three-color-fluorescence in situ hybridization using 5S, 18S rDNA, and U2 snRNA genes as probes in eight Triportheus species. This work represents the first one analyzing the chromosomal distribution of U2 snRNA genes in genomes of Triportheidae. The variability in number of rDNA clusters, and the divergent syntenies for these three multigene families, put in evidence their evolutionary dynamism, revealing a much more complex organization of these genes than previously supposed for closely related species. Our study also provides additional data on the accumulation of repetitive sequences in the sex-specific chromosome. Besides, the chromosomal organization of U2 snDNAs among fish species is also reviewed.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, Brazil
| | | | - Laureana Rebordinos
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Manuel Alejandro Merlo
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Thomas Liehr
- 3 Jena University Hospital, Friedrich Schiller University , Institute of Human Genetics, Jena, Germany
| | - Silvia Portela-Bens
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Marcelo de Bello Cioffi
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, Brazil
| |
Collapse
|
18
|
Gouveia JG, Wolf IR, de Moraes-Manécolo VPO, Bardella VB, Ferracin LM, Giuliano-Caetano L, da Rosa R, Dias AL. Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C 0t method. Cytotechnology 2016; 68:2711-2720. [PMID: 27344147 PMCID: PMC5101342 DOI: 10.1007/s10616-016-9996-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/10/2016] [Indexed: 10/21/2022] Open
Abstract
Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C0t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C0t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.
Collapse
Affiliation(s)
- Juceli Gonzalez Gouveia
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Ivan Rodrigo Wolf
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | | | - Vanessa Belline Bardella
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Lara Munique Ferracin
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Lucia Giuliano-Caetano
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Renata da Rosa
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Ana Lúcia Dias
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil.
| |
Collapse
|
19
|
Amorim KDJ, Cioffi MDB, Bertollo LAC, Soares RX, de Souza AS, da Costa GWWF, Molina WF. Co-located 18S/5S rDNA arrays: an ancient and unusual chromosomal trait in Julidini species (Labridae, Perciformes). COMPARATIVE CYTOGENETICS 2016; 10:555-570. [PMID: 28123678 PMCID: PMC5240509 DOI: 10.3897/compcytogen.v10i4.10227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Wrasses (Labridae) are extremely diversified marine fishes, whose species exhibit complex interactions with the reef environment. They are widely distributed in the Indian, Pacific and Atlantic oceans. Their species have displayed a number of karyotypic divergent processes, including chromosomal regions with complex structural organization. Current cytogenetic information for this family is phylogenetically and geographically limited and mainly based on conventional cytogenetic techniques. Here, the distribution patterns of heterochromatin, GC-specific chromosome regions and Ag-NORs, and the organization of 18S and 5S rDNA sites of the Atlantic species Thalassoma noronhanum (Boulenger, 1890), Halichoeres poeyi (Steindachner, 1867), Halichoeres radiatus (Linnaeus, 1758), Halichoeres brasiliensis (Bloch, 1791) and Halichoeres penrosei Starks, 1913, belonging to the tribe Julidini were analyzed. All the species exhibited 2n=48 chromosomes with variation in the number of chromosome arms among genera. Thalassoma noronhanum has 2m+46a, while species of the genus Halichoeres Rüppell, 1835 share karyotypes with 48 acrocentric chromosomes. The Halichoeres species exhibit differences in the heterochromatin distribution patterns and in the number and distribution of 18S and 5S rDNA sites. The occurrence of 18S/5S rDNA syntenic arrangements in all the species indicates a functionally stable and adaptive genomic organization. The phylogenetic sharing of this rDNA organization highlights a marked and unusual chromosomal singularity inside the family Labridae.
Collapse
Affiliation(s)
- Karlla Danielle Jorge Amorim
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235,13565-905, São Carlos, SP, Brasil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235,13565-905, São Carlos, SP, Brasil
| | - Rodrigo Xavier Soares
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Allyson Santos de Souza
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Gideão Wagner Werneck Felix da Costa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| |
Collapse
|
20
|
The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization. Mol Genet Genomics 2016; 291:1607-13. [PMID: 27106499 DOI: 10.1007/s00438-016-1204-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.
Collapse
|
21
|
García-Souto D, Troncoso T, Pérez M, Pasantes JJ. Molecular Cytogenetic Analysis of the European Hake Merluccius merluccius (Merlucciidae, Gadiformes): U1 and U2 snRNA Gene Clusters Map to the Same Location. PLoS One 2015; 10:e0146150. [PMID: 26716701 PMCID: PMC4696792 DOI: 10.1371/journal.pone.0146150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/13/2015] [Indexed: 01/25/2023] Open
Abstract
The European hake (Merluccius merluccius) is a highly valuable and intensely fished species in which a long-term alive stock has been established in captivity for aquaculture purposes. Due to their huge economic importance, genetic studies on hakes were mostly focused on phylogenetic and phylogeographic aspects; however chromosome numbers are still not described for any of the fifteen species in the genus Merluccius. In this work we report a chromosome number of 2n = 42 and a karyotype composed of three meta/submetacentric and 18 subtelo/telocentric chromosome pairs. Telomeric sequences appear exclusively at both ends of every single chromosome. Concerning rRNA genes, this species show a single 45S rDNA cluster at an intercalary location on the long arm of subtelocentric chromosome pair 12; the single 5S rDNA cluster is also intercalary to the long arm of chromosome pair 4. While U2 snRNA gene clusters map to a single subcentromeric position on chromosome pair 13, U1 snRNA gene clusters seem to appear on almost all chromosome pairs, but showing bigger clusters on pairs 5, 13, 16, 17 and 19. The brightest signals on pair 13 are coincident with the single U2 snRNA gene cluster signals. Therefore, the use of these probes allows the unequivocal identification of at least 7 of the chromosome pairs that compose the karyotype of Merluccius merluccius thus opening the way to integrate molecular genetics and cytological data on the study of the genome of this important species.
Collapse
Affiliation(s)
- Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
| | - Tomás Troncoso
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
- Grupo de Acuicultura Marina, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - Montse Pérez
- Grupo de Acuicultura Marina, Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - Juan José Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
22
|
Chairi H, Gonzalez LR. Structure and Organization of the Engraulidae Family U2 snRNA: An Evolutionary Model Gene? J Mol Evol 2015; 80:209-18. [PMID: 25838107 DOI: 10.1007/s00239-015-9674-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/27/2015] [Indexed: 01/01/2023]
Abstract
The U2 snRNA multigene family has been analyzed in four species of the Engraulidae family--Engraulis encrasicolus, Engraulis mordax, Engraulis ringens, and Engraulis japonicas--with the object of understanding more about the structure of this multigene family in these pelagic species and studying their phylogenetic relationships. The results showed that the cluster of this gene family in the Engraulis genus is formed by the U2-U5 snRNA with highly conserved sequences of mini- and micro-satellites, such as (CTGT)n, embedded downstream of the transcription unit; findings indicate that this gene family evolved following the concerted model. The phylogenetic analysis of the non-transcribed spacer of cluster U2-U5 snDNA in the 4 species showed that the sequences of the species E. encrasicolus and E. japonicus are closely related; these two are genetically close to E. mordax and slightly more distant from E. ringens. The data obtained by molecular analysis of U2-U5 snDNA and their secondary structure, with the presence of the micro-satellite (CTGT)n and mini-satellites, show clearly that the species E. encrasicolus and E. japonicus are closely related and would be older than E. mordax and E. ringens.
Collapse
Affiliation(s)
- Hicham Chairi
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, CACYTMAR, Universidad de Cádiz, Polígono Río San Pedro, s/n, 11510, Puerto Real, Cádiz, Spain
| | | |
Collapse
|
23
|
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet Genome Res 2013; 141:90-102. [PMID: 24080951 DOI: 10.1159/000354832] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Molecular cytogenetic data on the number and position of 45S ribosomal RNA genes (rDNA; located in nucleolus organizing regions, NORs) detected by FISH in 330 species of 77 families and 22 orders of bony fishes (Teleostei) and, additionally, 11 species of basal ray-finned fishes are compiled and analyzed. The portion of species with single rDNA sites in the sample amounts to 72%. The percentage of species with multiple NORs decreases with increasing numbers of rDNA loci per genome, i.e. scarcely 3% of species carry 4 or more rDNA-bearing chromosome pairs. 43% of all rDNA sites analyzed occur terminally on the short arms of chromosomes or constitute them. In general, terminal rDNA sites account for 87% of all examined cases. Interspecific variation in the location of single rDNA sites among related taxa, polymorphisms of multiple NORs in some groups of teleosts and analytical outcomes on the subject are reviewed.
Collapse
Affiliation(s)
- E Gornung
- 'Charles Darwin' Department of Biology and Biotechnologies, University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
24
|
Rebordinos L, Cross I, Merlo A. High evolutionary dynamism in 5S rDNA of fish: state of the art. Cytogenet Genome Res 2013; 141:103-13. [PMID: 24080995 DOI: 10.1159/000354871] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 5S ribosomal DNA (rDNA) consists of one transcriptional unit of about 120 base pairs, which is separated from the next unit by a non-transcribed spacer (NTS). The coding sequence and the NTS together form a repeat unit which can be found in hundreds to thousands of copies tandemly repeated in the genomes. The NTS regions seem to be subject to rapid evolution. The first general model of evolution of these multigene families was referred to as divergent evolution, based on studies using hemoglobin and myoglobin as model systems. Later studies showed that nucleotide sequences of different multigene family members are more closely related within species than between species. This observation led to a new model of multigene family evolution, termed concerted evolution. Another model of evolution, named the birth-and-death model, has been found to be more suitable to explain the long-term evolution of these multigene families. According to this model, new genes originate by successive duplications, and these new genes are either maintained for a long time or are lost, or else degenerate into pseudogenes. In this review we describe different sources of variability in the 5S rDNA genes observed in several distinct fish species. This variability is mainly referred to NTSs and includes the presence of other multigene families (mainly LINEs, SINEs, non-LTR retrotransposons, and U snRNA families). Different types of microsatellites have also been found to contribute to the increase of variability in this region. Our recent results suggest that horizontal transfer contributes to the increase of diversity in the NTSs of some species. Variability in the 5S rDNA coding region affecting the stability of the structure, but without effects on the function of the 5S rRNA, is also described. Retrotransposons seem to be responsible for the high dynamism of 5S rDNA, while microsatellites acting as recombination hot spots could stabilize a wide variety of unusual DNA structures, affecting DNA replication and enhancing or decreasing promoter activity in gene expression. The relationship between the high variability found at molecular level and the low variability found at chromosomal level is also discussed.
Collapse
Affiliation(s)
- L Rebordinos
- Area de Genética, Facultad de Ciencias del Mar y Ambientales, CEI-Mar, Universidad de Cádiz, Puerto Real, Spain
| | | | | |
Collapse
|