1
|
Lee M, Vetter J, Eichwald C. The influence of the cytoskeleton on the development and behavior of viral factories in mammalian orthoreovirus. Virology 2025; 604:110423. [PMID: 39889480 DOI: 10.1016/j.virol.2025.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cytosolic viral factories (VFs) of mammalian orthoreovirus (MRV) are sites for viral genome replication and assembly of virus progeny. Despite advancements in reverse genetics, the formation and dynamics of VFs still need to be clarified. MRV exploits host cytoskeletal components like microtubules (MTs) throughout its life cycle, including cell entry, replication, and release. MRV VFs, membrane-less cytosolic inclusions, rely on the viral proteins μ2 and μNS for formation. Protein μ2 interacts and stabilizes MTs through acetylation, supporting VF formation and viral replication, while scaffold protein μNS influences cellular components to aid VF maturation. The disruption of the MT network reduces viral replication, underscoring its importance. Additionally, μ2 associates with MT-organizing centers, modulating the MT dynamics to favor viral replication. In summary, MRV subverts the cytoskeleton to facilitate VF dynamics and promote viral replication and assembly to promote VF dynamics, replication, and assembly, highlighting the critical role of the cytoskeleton in viral replication.
Collapse
Affiliation(s)
- Melissa Lee
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Aftab A, Sil S, Nath S, Basu A, Basu S. Intrinsic Disorder and Other Malleable Arsenals of Evolved Protein Multifunctionality. J Mol Evol 2024; 92:669-684. [PMID: 39214891 DOI: 10.1007/s00239-024-10196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Microscopic evolution at the functional biomolecular level is an ongoing process. Leveraging functional and high-throughput assays, along with computational data mining, has led to a remarkable expansion of our understanding of multifunctional protein (and gene) families over the past few decades. Various molecular and intermolecular mechanisms are now known that collectively meet the cumulative multifunctional demands in higher organisms along an evolutionary path. This multitasking ability is attributed to a certain degree of intrinsic or adapted flexibility at the structure-function level. Evolutionary diversification of structure-function relationships in proteins highlights the functional importance of intrinsically disordered proteins/regions (IDPs/IDRs) which are highly dynamic biological soft matter. Multifunctionality is favorably supported by the fluid-like shapes of IDPs/IDRs, enabling them to undergo disorder-to-order transitions upon binding to different molecular partners. Other new malleable members of the protein superfamily, such as those involved in fold-switching, also undergo structural transitions. This new insight diverges from all traditional notions of functional singularity in enzyme classes and emphasizes a far more complex, multi-layered diversification of protein functionality. However, a thorough review in this line, focusing on flexibility and function-driven structural transitions related to evolved multifunctionality in proteins, is currently missing. This review attempts to address this gap while broadening the scope of multifunctionality beyond single protein sequences. It argues that protein intrinsic disorder is likely the most striking mechanism for expressing multifunctionality in proteins. A phenomenological analogy has also been drawn to illustrate the increasingly complex nature of modern digital life, driven by the need for multitasking, particularly involving media.
Collapse
Affiliation(s)
- Asifa Aftab
- Department of Zoology, Asutosh College, (affiliated with University of Calcutta), Kolkata, 700026, India
| | - Souradeep Sil
- Department of Genetics, Osmania University, Hyderabad, 500007, India
| | - Seema Nath
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anirneya Basu
- Department of Microbiology, Asutosh College (Affiliated With University of Calcutta), Kolkata, 700026, India
| | - Sankar Basu
- Department of Microbiology, Asutosh College (Affiliated With University of Calcutta), Kolkata, 700026, India.
| |
Collapse
|
3
|
Sun H, Ciska M, Makki M, Tenllado F, Canto T. Adaptive substitutions at two amino acids of HCPro modify its functional properties to separately increase the virulence of a potyviral chimera. MOLECULAR PLANT PATHOLOGY 2024; 25:e13487. [PMID: 38877765 PMCID: PMC11178974 DOI: 10.1111/mpp.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.
Collapse
Affiliation(s)
- Hao Sun
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)Spanish National Research Council, CSICMadridSpain
| | - Malgorzata Ciska
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)Spanish National Research Council, CSICMadridSpain
| | - Mongia Makki
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of SciencesUniversity of Tunis El ManarTunisTunisia
| | - Francisco Tenllado
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)Spanish National Research Council, CSICMadridSpain
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)Spanish National Research Council, CSICMadridSpain
| |
Collapse
|
4
|
Lakshminarayana Reddy CN, Venkataravanappa V, Chowdappa A, Shridhar H, Mantesh M, Vinaykumar HD, Krishna Reddy M. Complete genome characterization of chilli veinal mottle virus associated with mosaic and mottling disease of tomato and development of LAMP assay for quick detection. 3 Biotech 2024; 14:139. [PMID: 38682094 PMCID: PMC11052978 DOI: 10.1007/s13205-024-03984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Chilli veinal mottle virus (ChiVMV) is a potyvirus known to cause havoc in many solanaceous crops. Samples from tomato plants exhibiting typical mosaic and mottling symptoms in two locations from farmers' fields were collected and tested using DAC ELISA for the presence of ChiVMV and other viruses known to infect tomato. ChiVMV Gauribidanur isolate from infected tomato was mechanically inoculated to Datura metel, Nicotiana tabacum, Nicotiana benthamiana, Nicotiana glutinosa, chilli, and tomato plants which exhibited systemic mosaic and mottling symptoms 10 days post-inoculation. This results were further confirmed by RT-PCR and DAC ELISA using CP gene-specific primers and ChiVMV antisera, respectively. Transmission electron microscopy revealed the presence of long filamentous particles (800 × 11 nm) resembling viruses in the Potyviridae family. The complete genome of ChiVMV comprised 9716 nucleotides except for poly A tail, with a predicted open reading frame spanning 9270 nucleotides encoding polyproteins of 3089 amino acids. Comparative analysis revealed that ChiVMV-tomato isolates reported across the world shared maximum nucleotide identity (93-96.7%) with chilli isolates from India and Pakistan. These results were well supported by sequence demarcation analysis. Further, the Neibhor-Net network analysis of the complete genome of ChiVMV-tomato, along with other host isolates, formed a reticular network phylogenetic tree suggesting recombination events. Subsequently, RDP5 detected intra-specific recombination breakpoints at the positions 1656-5666 nucleotides with major parent ChiVMV (MN508960) Uravakonda and minor parent ChiVMV (MN508956) with a significant average p value of 1.905 × 10-22. The LAMP assay using ChiVMV-specific primers resulted in ladder-like amplified products on electrophoresed gel and a distinct red colour pattern with hydroxy naphthalene blue, indicating a positive reaction for the presence of ChiVMV in infected tomato samples. To validate LAMP-designed primers, RNA extracted from ChiVMV-infected tomato, chilli, datura, and tobacco samples were subjected to LAMP assay and it accurately detected the presence of ChiVMV in infected plant samples. Overall, this study provides holistic information of ChiVMV infecting tomato, spanning diagnosis, transmission, genetic characterization, and detection of recombination events, which collectively contribute to effective disease management, crop protection, and informed decision-making in agricultural practices.
Collapse
Affiliation(s)
- C. N. Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - V. Venkataravanappa
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - A. Chowdappa
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - H. Shridhar
- CSIR- North East Institute of Science and Technology, Jorhat, Assam 785006 India
| | - M. Mantesh
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - H. D. Vinaykumar
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - M. Krishna Reddy
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| |
Collapse
|
5
|
Hu W, Dai Z, Liu P, Deng C, Shen W, Li Z, Cui H. The Single Distinct Leader Protease Encoded by Alpinia oxyphylla Mosaic Virus (Genus Macluravirus) Suppresses RNA Silencing Through Interfering with Double-Stranded RNA Synthesis. PHYTOPATHOLOGY 2023; 113:1103-1114. [PMID: 36576401 DOI: 10.1094/phyto-10-22-0371-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Weiyao Hu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Changhui Deng
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zengping Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
6
|
Nigam D, Muthukrishnan E, Flores-López LF, Nigam M, Wamaitha MJ. Comparative Genome Analysis of Old World and New World TYLCV Reveals a Biasness toward Highly Variable Amino Acids in Coat Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:1995. [PMID: 37653912 PMCID: PMC10223811 DOI: 10.3390/plants12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Begomoviruses, belonging to the family Geminiviridae and the genus Begomovirus, are DNA viruses that are transmitted by whitefly Bemisia tabaci (Gennadius) in a circulative persistent manner. They can easily adapt to new hosts and environments due to their wide host range and global distribution. However, the factors responsible for their adaptability and coevolutionary forces are yet to be explored. Among BGVs, TYLCV exhibits the broadest range of hosts. In this study, we have identified variable and coevolving amino acid sites in the proteins of Tomato yellow leaf curl virus (TYLCV) isolates from Old World (African, Indian, Japanese, and Oceania) and New World (Central and Southern America). We focused on mutations in the coat protein (CP), as it is highly variable and interacts with both vectors and host plants. Our observations indicate that some mutations were accumulating in Old World TYLCV isolates due to positive selection, with the S149N mutation being of particular interest. This mutation is associated with TYLCV isolates that have spread in Europe and Asia and is dominant in 78% of TYLCV isolates. On the other hand, the S149T mutation is restricted to isolates from Saudi Arabia. We further explored the implications of these amino acid changes through structural modeling. The results presented in this study suggest that certain hypervariable regions in the genome of TYLCV are conserved and may be important for adapting to different host environments. These regions could contribute to the mutational robustness of the virus, allowing it to persist in different host populations.
Collapse
Affiliation(s)
- Deepti Nigam
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University (TTU), Lubbock, TX 79409, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | | | - Luis Fernando Flores-López
- Departamento de Biotecnología y Bioquímica, Centro de Investigacióny de Estudios Avanzados de IPN (CINVESTAV) Unidad Irapuato, Irapuato 368224, Mexico
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Mwathi Jane Wamaitha
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi P.O. Box 14733-00800, Kenya
| |
Collapse
|
7
|
Pepper Mottle Virus and Its Host Interactions: Current State of Knowledge. Viruses 2021; 13:v13101930. [PMID: 34696360 PMCID: PMC8539092 DOI: 10.3390/v13101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.
Collapse
|
8
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
9
|
Nigam D. Genomic Variation and Diversification in Begomovirus Genome in Implication to Host and Vector Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1706. [PMID: 34451752 PMCID: PMC8398267 DOI: 10.3390/plants10081706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) are DNA viruses transmitted in a circulative, persistent manner by the whitefly Bemisia tabaci (Gennadius). As revealed by their wide host range (more than 420 plant species), worldwide distribution, and effective vector transmission, begomoviruses are highly adaptive. Still, the genetic factors that facilitate their adaptation to a diverse array of hosts and vectors remain poorly understood. Mutations in the virus genome may confer a selective advantage for essential functions, such as transmission, replication, evading host responses, and movement within the host. Therefore, genetic variation is vital to virus evolution and, in response to selection pressure, is demonstrated as the emergence of new strains and species adapted to diverse hosts or with unique pathogenicity. The combination of variation and selection forms a genetic imprint on the genome. This review focuses on factors that contribute to the evolution of Begomovirus and their global spread, for which an unforeseen diversity and dispersal has been recognized and continues to expand.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Yang T, Qiu L, Huang W, Xu Q, Zou J, Peng Q, Lin H, Xi D. Chilli veinal mottle virus HCPro interacts with catalase to facilitate virus infection in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5656-5668. [PMID: 32594157 PMCID: PMC7501817 DOI: 10.1093/jxb/eraa304] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
Plant symptoms are derived from specific interactions between virus and host components. However, little is known about viral or host factors that participate in the establishment of systemic necrosis. Here, we showed that helper component proteinase (HCPro), encoded by Chilli veinal mottle virus (ChiVMV), could directly interact with catalase 1 (CAT1) and catalase 3 (CAT3) in the cytoplasm of tobacco (Nicotiana tabacum) plants to facilitate viral infection. In vitro, the activities of CAT1 and CAT3 were inhibited by the interaction between HCPro and CATs. The C-terminus of HCPro was essential for their interaction and was also required for the decrease of enzyme activities. Interestingly, the mRNA and protein level of CATs were up-regulated in tobacco plants in response to ChiVMV infection. Nicotiana tabacum plants with HCPro overexpression or CAT1 knockout were more susceptible to ChiVMV infection, which was similar to the case of H2O2-pre-treated plants, and the overexpression of CAT1 inhibited ChiVMV accumulation. Also, neither CAT1 nor CAT3 could affect the RNA silencing suppression (RSS) activity of HCPro. Our results showed that the interaction between HCPro and CATs promoted the development of plant systemic necrosis, revealing a novel role for HCPro in virus infection and pathogenicity.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Long Qiu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Wanying Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Qianyi Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Jialing Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Qiding Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
11
|
Bao W, Yan T, Deng X, Wuriyanghan H. Synthesis of Full-Length cDNA Infectious Clones of Soybean Mosaic Virus and Functional Identification of a Key Amino Acid in the Silencing Suppressor Hc-Pro. Viruses 2020; 12:E886. [PMID: 32823665 PMCID: PMC7472419 DOI: 10.3390/v12080886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV), which belongs to the Potyviridae, causes significant reductions in soybean yield and seed quality. In this study, both tag-free and reporter gene green fluorescent protein (GFP)-containing infectious clones for the SMV N1 strain were constructed by Gibson assembly and with the yeast homologous recombination system, respectively. Both infectious clones are suitable for agroinfiltration on the model host N. benthamiana and show strong infectivity for the natural host soybean and several other legume species. Both infectious clones were seed transmitted and caused typical virus symptoms on seeds and progeny plants. We used the SMV-GFP infectious clone to further investigate the role of key amino acids in the silencing suppressor helper component-proteinase (Hc-Pro). Among twelve amino acid substitution mutants, the co-expression of mutant 2-with an Asparagine→Leucine substitution at position 182 of the FRNK (Phe-Arg-Asn-Lys) motif-attenuated viral symptoms and alleviated the host growth retardation caused by SMV. Moreover, the Hc-Prom2 mutant showed stronger oligomerization than wild-type Hc-Pro. Taken together, the SMV infectious clones will be useful for studies of host-SMV interactions and functional gene characterization in soybeans and related legume species, especially in terms of seed transmission properties. Furthermore, the SMV-GFP infectious clone will also facilitate functional studies of both virus and host genes in an N. benthamiana transient expression system.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoyi Deng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
12
|
Complete genome sequence of a novel potyvirus isolated from Polygonatum kingianum. Arch Virol 2020; 165:2127-2131. [PMID: 32632824 DOI: 10.1007/s00705-020-04717-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 10/23/2022]
Abstract
The complete genome sequence of a putative novel potyvirus, tentatively named "Polygonatum kingianum virus 1" (PKgV1), infecting Polygonatum kingianum in China was determined (GenBank accession no. MK427056). PKgV1 has a genome organization that is typical of potyviruses, with a single large open reading frame (nt 123-9236) that encodes a 3037-aa polyprotein that is predicted to be cleaved into 10 mature proteins by virus-encoded proteases. Nine cleavage sites and several conserved motifs were identified in PKgV1 by comparative sequence analysis. Pairwise comparisons revealed that the PKgV1 polyprotein shares 52.0-56.2% nucleotide and 49.2-52.8% amino acid sequence identity with members of the genus Potyvirus. Phylogenetic analysis indicated that PKgV1 clustered with members of the genus Potyvirus and that it is closely related to but distinct from lettuce mosaic virus (LMV, accession no. KJ161186). These results suggest that Polygonatum kingianum virus 1 (PKgV1) is a new member of the genus Potyvirus of the family Potyviridae.
Collapse
|
13
|
The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection. Viruses 2020; 12:v12010077. [PMID: 31936267 PMCID: PMC7019339 DOI: 10.3390/v12010077] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Potyviruses represent the largest group of known plant RNA viruses and include many agriculturally important viruses, such as Plum pox virus, Soybean mosaic virus, Turnip mosaic virus, and Potato virus Y. Potyviruses adopt polyprotein processing as their genome expression strategy. Among the 11 known viral proteins, the nuclear inclusion protein b (NIb) is the RNA-dependent RNA polymerase responsible for viral genome replication. Beyond its principal role as an RNA replicase, NIb has been shown to play key roles in diverse virus–host interactions. NIb recruits several host proteins into the viral replication complexes (VRCs), which are essential for the formation of functional VRCs for virus multiplication, and interacts with the sumoylation pathway proteins to suppress NPR1-mediated immunity response. On the other hand, NIb serves as a target of selective autophagy as well as an elicitor of effector-triggered immunity, resulting in attenuated virus infection. These contrasting roles of NIb provide an excellent example of the complex co-evolutionary arms race between plant hosts and potyviruses. This review highlights the current knowledge about the multifunctional roles of NIb in potyvirus infection, and discusses future research directions.
Collapse
|
14
|
Mosquera-Yuqui F, Garrido P, Flores FJ. Molecular characterization and complete genome of alstroemeria mosaic virus (AlMV). Virus Genes 2019; 56:87-93. [PMID: 31696416 DOI: 10.1007/s11262-019-01712-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022]
Abstract
Even though alstroemeria mosaic virus (AlMV) is one of the most important viruses affecting alstroemeria plants, its genome is only partially available in public sequence databases. High throughput sequencing (HTS) of RNA from alstroemeria plants with symptoms of mosaic and streaking, collected in Lasso-Ecuador, indicated the presence of AlMV and lily symptomless virus. In this study, we aimed to assemble and characterize the complete genome sequence of AlMV. Reads from Illumina sequencing of ribosomal RNA-depleted total RNA were assembled into contigs that were mapped to the sunflower chlorotic mottle virus genome, revealing the 9774 [corrected] bp complete genome sequence of AlMV. Multiple sequence alignment of the AlMV polyprotein with close homologs allowed the identification of ten mature proteins P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, NIa-Pro, NIb and CP. Furthermore, several potyvirus motifs were identified in the AlMV polyprotein including those related to potyvirus aphid transmission 334KMTC337, 592PTK594 and 2800DAG2802. Phylogenetic analysis based in the polyprotein showed that AlMV belongs to the potato virus Y clade and its closest relative is sunflower ring blotch virus. This study describes the first complete genome of AlMV and its placement within the genus Potyvirus, providing valuable information for future studies on this economically important virus.
Collapse
Affiliation(s)
- Francisco Mosquera-Yuqui
- Departamento de Ciencias de La Vida y La Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador.
| | - Patricia Garrido
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de La Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Francisco J Flores
- Departamento de Ciencias de La Vida y La Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador.,Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de La Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Ecuador
| |
Collapse
|
15
|
Pharmacological analysis of transmission activation of two aphid-vectored plant viruses, turnip mosaic virus and cauliflower mosaic virus. Sci Rep 2019; 9:9374. [PMID: 31253881 PMCID: PMC6599202 DOI: 10.1038/s41598-019-45904-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 12/30/2022] Open
Abstract
Turnip mosaic virus (TuMV, family Potyviridae) and cauliflower mosaic virus (CaMV, family Caulimoviridae) are transmitted by aphid vectors. They are the only viruses shown so far to undergo transmission activation (TA) immediately preceding plant-to-plant propagation. TA is a recently described phenomenon where viruses respond to the presence of vectors on the host by rapidly and transiently forming transmissible complexes that are efficiently acquired and transmitted. Very little is known about the mechanisms of TA and on whether such mechanisms are alike or distinct in different viral species. We use here a pharmacological approach to initiate the comparison of TA of TuMV and CaMV. Our results show that both viruses rely on calcium signaling and reactive oxygen species (ROS) for TA. However, whereas application of the thiol-reactive compound N-ethylmaleimide (NEM) inhibited, as previously shown, TuMV transmission it did not alter CaMV transmission. On the other hand, sodium azide, which boosts CaMV transmission, strongly inhibited TuMV transmission. Finally, wounding stress inhibited CaMV transmission and increased TuMV transmission. Taken together, the results suggest that transmission activation of TuMV and CaMV depends on initial calcium and ROS signaling that are generated during the plant's immediate responses to aphid manifestation. Interestingly, downstream events in TA of each virus appear to diverge, as shown by the differential effects of NEM, azide and wounding on TuMV and CaMV transmission, suggesting that these two viruses have evolved analogous TA mechanisms.
Collapse
|
16
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
17
|
Pagán I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. INFECTION GENETICS AND EVOLUTION 2018; 65:187-199. [PMID: 30055330 DOI: 10.1016/j.meegid.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| |
Collapse
|
18
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
19
|
|
20
|
Geng C, Wang H, Liu J, Yan Z, Tian Y, Yuan X, Gao R, Li X. Transcriptomic changes in Nicotiana benthamiana plants inoculated with the wild-type or an attenuated mutant of Tobacco vein banding mosaic virus. MOLECULAR PLANT PATHOLOGY 2017; 18:1175-1188. [PMID: 27539720 PMCID: PMC6638280 DOI: 10.1111/mpp.12471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 05/12/2023]
Abstract
Tobacco vein banding mosaic virus (TVBMV) is a potyvirus which mainly infects solanaceous crops. The helper component proteinase (HCpro) of a potyvirus is an RNA silencing suppressor protein and determines the severity of disease symptoms caused by different potyviruses, including TVBMV. It has been shown that substitution mutations introduced into the HCpro open reading frame (ORF) in a TVBMV infectious clone result in changes of Asp189 to Lys or Ile250 -Gln251 to Asp-Glu (Asp, aspartic acid; Gln, glutamine; Glu, glutamic acid; Ile, isoleucine). These amino acid changes eliminate the RNA silencing suppression activity of the mutant HCpro (HCm) and attenuate the disease symptoms caused by the mutant TVBMV (T-HCm) in Nicotiana benthamiana plants. Here, we used RNA-sequencing technology to compare gene expression in plants inoculated with the wild-type TVBMV (T-WT) with that in plants inoculated with T-HCm at 1, 2 and 10 days post-agroinfiltration (dpai). At 1 and 2 dpai, N. benthamiana genes related to the translation machinery were up-regulated, whereas genes related to lipid biosynthesis and metabolism or to responses to extracellular/external stimuli were down-regulated in leaves inoculated with T-WT or T-HCm. At 10 dpai, T-WT infection repressed photosynthesis-related genes. T-WT and T-HCm infections differentially perturbed the genes involved in the RNA silencing pathway. The salicylic acid and ethylene signalling pathways were induced, but the jasmonic acid signalling pathway was repressed after T-WT infection. Infections of T-WT and T-HCm also differentially regulated the genes involved in auxin signalling transduction, which is known to associate with the stunting phenotypes caused by TVBMV. These results illustrate the dynamic nature of TVBMV infection in N. benthamiana at the transcriptomic level.
Collapse
Affiliation(s)
- Chao Geng
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Hong‐Yan Wang
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Jin Liu
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
| | - Zhi‐Yong Yan
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Yan‐Ping Tian
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Xue‐Feng Yuan
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Rui Gao
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
| | - Xiang‐Dong Li
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| |
Collapse
|
21
|
Cabrera Mederos D, Bejerman N, Trucco V, de Breuil S, Lenardon S, Giolitti F. Complete genome sequence of sunflower ring blotch virus, a new potyvirus infecting sunflower in Argentina. Arch Virol 2017; 162:1787-1790. [PMID: 28224251 DOI: 10.1007/s00705-017-3275-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
The complete genome sequence of sunflower ring blotch virus (SuRBV), a previously undescribed potyvirus infecting sunflower in Argentina, is reported. The SuRBV genome comprises 9555 nucleotides (nt) and encodes a polyprotein of 3061 amino acids, flanked by 5' and 3' untranslated regions of 117 and 255 nt, respectively. Phylogenetic analysis showed that SuRBV belongs to the potato virus Y (PVY) subgroup and clusters together with sunflower chlorotic mottle virus and bidens mosaic virus. Percentage nucleotide identity between the whole genomes of SuRBV and BiMV was 70.6%, suggesting SuRBV should be considered a distinct species in the genus Potyvirus.
Collapse
Affiliation(s)
- Dariel Cabrera Mederos
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Av. 11 de Septiembre 4755, X5020ICA, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FBQ, Buenos Aires, Argentina.
| | - Nicolás Bejerman
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Av. 11 de Septiembre 4755, X5020ICA, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FBQ, Buenos Aires, Argentina
| | - Verónica Trucco
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Av. 11 de Septiembre 4755, X5020ICA, Córdoba, Argentina
| | - Soledad de Breuil
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Av. 11 de Septiembre 4755, X5020ICA, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FBQ, Buenos Aires, Argentina
| | - Sergio Lenardon
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Av. 11 de Septiembre 4755, X5020ICA, Córdoba, Argentina
| | - Fabián Giolitti
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Av. 11 de Septiembre 4755, X5020ICA, Córdoba, Argentina.
| |
Collapse
|
22
|
Carmona D, Fitzpatrick CR, Johnson MTJ. Fifty years of co-evolution and beyond: integrating co-evolution from molecules to species. Mol Ecol 2015; 24:5315-29. [PMID: 26394718 DOI: 10.1111/mec.13389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 02/04/2023]
Abstract
Fifty years after Ehrlich and Raven's seminal paper, the idea of co-evolution continues to grow as a key concept in our understanding of organic evolution. This concept has not only provided a compelling synthesis between evolutionary biology and community ecology, but has also inspired research that extends beyond its original scope. In this article, we identify unresolved questions about the co-evolutionary process and advocate for the integration of co-evolutionary research from molecular to interspecific interactions. We address two basic questions: (i) What is co-evolution and how common is it? (ii) What is the unit of co-evolution? Both questions aim to explore the heart of the co-evolutionary process. Despite the claim that co-evolution is ubiquitous, we argue that there is in fact little evidence to support the view that reciprocal natural selection and coadaptation are common in nature. We also challenge the traditional view that co-evolution only occurs between traits of interacting species. Co-evolution has the potential to explain evolutionary processes and patterns that result from intra- and intermolecular biochemical interactions within cells, intergenomic interactions (e.g. nuclear-cytoplasmic) within species, as well as intergenomic interactions mediated by phenotypic traits between species. Research that bridges across these levels of organization will help to advance our understanding of the importance of the co-evolutionary processes in shaping the diversity of life on Earth.
Collapse
Affiliation(s)
- Diego Carmona
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Connor R Fitzpatrick
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
23
|
Worrall EA, Wamonje FO, Mukeshimana G, Harvey JJ, Carr JP, Mitter N. Bean Common Mosaic Virus and Bean Common Mosaic Necrosis Virus: Relationships, Biology, and Prospects for Control. Adv Virus Res 2015; 93:1-46. [PMID: 26111585 DOI: 10.1016/bs.aivir.2015.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The closely related potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) are major constraints on common bean (Phaseolus vulgaris) production. Crop losses caused by BCMV and BCMNV impact severely not only on commercial scale cultivation of this high-value crop but also on production by smallholder farmers in the developing world, where bean serves as a key source of dietary protein and mineral nutrition. In many parts of the world, progress has been made in combating BCMV through breeding bean varieties possessing the I gene, a dominant gene conferring resistance to most BCMV strains. However, in Africa, and in particular in Central and East Africa, BCMNV is endemic and this presents a serious problem for deployment of the I gene because this virus triggers systemic necrosis (black root disease) in plants possessing this resistance gene. Information on these two important viruses is scattered throughout the literature from 1917 onward, and although reviews on resistance to BCMV and BCMNV exist, there is currently no comprehensive review on the biology and taxonomy of BCMV and BCMNV. In this chapter, we discuss the current state of our knowledge of these two potyviruses including fundamental aspects of classification and phylogeny, molecular biology, host interactions, transmission through seed and by aphid vectors, geographic distribution, as well as current and future prospects for the control of these important viruses.
Collapse
|