1
|
Abstract
Dipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.
Collapse
|
2
|
Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li WX, Wang GT. The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics 2017; 18:840. [PMID: 29096600 PMCID: PMC5669012 DOI: 10.1186/s12864-017-4237-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. RESULTS The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. CONCLUSIONS Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
3
|
Monogonont Rotifer, Brachionus calyciflorus, Possesses Exceptionally Large, Fragmented Mitogenome. PLoS One 2016; 11:e0168263. [PMID: 27959933 PMCID: PMC5154566 DOI: 10.1371/journal.pone.0168263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022] Open
Abstract
In contrast to the highly conserved mitogenomic structure and organisation in most animals (including rotifers), the two previously sequenced monogonont rotifer mitogenomes were fragmented into two chromosomes similar in size, each of which possessed one major non-coding region (mNCR) of about 4–5 Kbp. To further explore this phenomenon, we have sequenced and analysed the mitogenome of one of the most studied monogonont rotifers, Brachionus calyciflorus. It is also composed of two circular chromosomes, but the chromosome-I is extremely large (27 535 bp; 3 mNCRs), whereas the chromosome-II is relatively small (9 833 bp; 1 mNCR). With the total size of 37 368 bp, it is one of the largest metazoan mitogenomes ever reported. In comparison to other monogononts, gene distribution between the two chromosomes and gene order are different and the number of mNCRs is doubled. Atp8 was not found (common in rotifers), and Cytb was present in two copies (the first report in rotifers). A high number (99) of SNPs indicates fast evolution of the Cytb-1 copy. The four mNCRs (5.3–5.5 Kb) were relatively similar. Publication of this sequence shall contribute to the understanding of the evolutionary history of the unique mitogenomic organisation in this group of rotifers.
Collapse
|
4
|
The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes. Proc Natl Acad Sci U S A 2015; 112:10185-91. [PMID: 25944937 DOI: 10.1073/pnas.1421397112] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Across eukaryotes, mitochondria exhibit staggering diversity in genomic architecture, including the repeated evolution of multichromosomal structures. Unlike in the nucleus, where mitosis and meiosis ensure faithful transmission of chromosomes, the mechanisms of inheritance in fragmented mitochondrial genomes remain mysterious. Multichromosomal mitochondrial genomes have recently been found in multiple species of flowering plants, including Silene noctiflora, which harbors an unusually large and complex mitochondrial genome with more than 50 circular-mapping chromosomes totaling ∼7 Mb in size. To determine the extent to which such genomes are stably maintained, we analyzed intraspecific variation in the mitochondrial genome of S. noctiflora. Complete genomes from two populations revealed a high degree of similarity in the sequence, structure, and relative abundance of mitochondrial chromosomes. For example, there are no inversions between the genomes, and there are only nine SNPs in 25 kb of protein-coding sequence. Remarkably, however, these genomes differ in the presence or absence of 19 entire chromosomes, all of which lack any identifiable genes or contain only duplicate gene copies. Thus, these mitochondrial genomes retain a full gene complement but carry a highly variable set of chromosomes that are filled with presumably dispensable sequence. In S. noctiflora, conventional mechanisms of mitochondrial sequence divergence are being outstripped by an apparently nonadaptive process of whole-chromosome gain/loss, highlighting the inherent challenge in maintaining a fragmented genome. We discuss the implications of these findings in relation to the question of why mitochondria, more so than plastids and bacterial endosymbionts, are prone to the repeated evolution of multichromosomal genomes.
Collapse
|
5
|
Beagley CT, Wolstenholme DR. Characterization and localization of mitochondrial DNA-encoded tRNAs and nuclear DNA-encoded tRNAs in the sea anemone Metridium senile. Curr Genet 2013; 59:139-52. [PMID: 23801360 DOI: 10.1007/s00294-013-0395-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/12/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
The mitochondrial (mt) genome of the sea anemone Metridium senile contains genes for only two transfer RNAs (tRNAs), tRNAf-Met and tRNATrp. Experiments were conducted to seek evidence for the occurrence of functional tRNAs corresponding to these genes and for the participation of nuclear DNA-encoded tRNAs in mt-protein synthesis. RNA sequences corresponding to the two mt-tRNA genes were located in mitochondria and it was shown that 3'-CC (and possibly A, but no other nucleotide) is added post-transcriptionally to the 3' end of at least 50 % of mt-tRNAf-Met molecules and to a small fraction of the mt-tRNATrp molecules. Using specific oligonucleotide primers based on expected nuclear DNA-encoded tRNAs in a series of RACE experiments, we located the nuclear genes for tRNAGln, tRNAIle, tRNAi-Met, tRNAVal and tRNAThr. Data from Northern blot analyses indicated that mtDNA-encoded tRNAf-Met is limited to mitochondria but that nuclear DNA-encoded tRNAVal and tRNAi-Met are present in the cytoplasm and in mitochondria. These data provide direct evidence that in M. senile, mature, functional tRNAs are transcribed from the mtDNA-encoded tRNAf-Met and tRNATrp genes, and are consistent with the interpretation that both nuclear DNA-encoded tRNAVal and tRNAi-Met are utilized in mitochondrial and cytosolic protein synthesis.
Collapse
Affiliation(s)
- C Timothy Beagley
- Department of Biology, University of Utah, Salt Lake City, UT 84121, USA.
| | | |
Collapse
|
6
|
Herrera S, Shank TM, Sánchez JA. Spatial and temporal patterns of genetic variation in the widespread antitropical deep-sea coralParagorgia arborea. Mol Ecol 2012; 21:6053-67. [DOI: 10.1111/mec.12074] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/28/2012] [Accepted: 09/01/2012] [Indexed: 01/20/2023]
Affiliation(s)
| | - T. M. Shank
- Biology Department; Woods Hole Oceanographic Institution; 266 Woods Hole Road; Woods Hole; MA; 02543; USA
| | - J. A. Sánchez
- Laboratorio de Biologia Molecular Marina (BIOMMAR), Departamento Ciencias Biologicas; Universidad de los Andes; Carrera 1E No 18A - 10; Bogota; Colombia
| |
Collapse
|
7
|
Væinölæ R, Oulasvirta P, Høisæter T. The first record ofMaeotias marginata(Cnidaria, Hydrozoa) from the Baltic Sea: a Pontocaspian invader. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/00364827.2001.10425527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Cheng R, Zheng X, Lin X, Yang J, Li Q. Determination of the complete mitochondrial DNA sequence of Octopus minor. Mol Biol Rep 2011; 39:3461-70. [PMID: 21710247 DOI: 10.1007/s11033-011-1118-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 06/20/2011] [Indexed: 01/31/2023]
Abstract
In this study, we have determined the complete nucleotide sequence of the mitochondrial genome of Octopus minor. It is 15,974 nucleotide pairs and encodes 13 proteins, two ribosomal RNAs and 22 tRNAs of the mitochondrion's own protein synthesizing system. Seven of thirteen proteins are encoded by the H-strand, while the other six proteins, as well as the two ribosomal RNAs are encoded by the L-strand. The nucleotide composition of the proteins showed a nucleotide bias against G encoded by the H-strand, while they showed a nucleotide bias against A and C encoded by the L-strand. Two of the 13 protein coding genes of O. minor began with the unorthodox translation initiation codon ATA and all others use the standard ATG. In addition, six of thirteen mt proteins of O. minor have unambiguous termination codons. There are four cases where tRNA genes appear to overlap. The long noncoding region (LNCR) of O. minor was 930 nucleotides and no repeated sequences were found in this LNCR. The gene arrangements of O. minor showed remarkable similarity to that of O. ocellatus and O. vulgaris. Phylogenetic analysis demonstrated that O. minor appears as sister taxan to the monophyletic group combined by O. ocellatus and O. vulgaris, suggesting a relative distant genetic relationship between O. minor and the other two octopus species.
Collapse
Affiliation(s)
- Rubin Cheng
- Fisheries College, Ocean University of China, Qingdao, 266003, China
| | | | | | | | | |
Collapse
|
9
|
Herrera S, Baco A, Sánchez JA. Molecular systematics of the bubblegum coral genera (Paragorgiidae, Octocorallia) and description of a new deep-sea species. Mol Phylogenet Evol 2010; 55:123-135. [DOI: 10.1016/j.ympev.2009.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/30/2009] [Accepted: 12/04/2009] [Indexed: 11/26/2022]
|
10
|
Rand DM. 'Why genomes in pieces?' revisited: sucking lice do their own thing in mtDNA circle game. Genome Res 2009; 19:700-2. [PMID: 19411594 DOI: 10.1101/gr.091132.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
11
|
Leclère L, Schuchert P, Cruaud C, Couloux A, Manuel M. Molecular phylogenetics of Thecata (Hydrozoa, Cnidaria) reveals long-term maintenance of life history traits despite high frequency of recent character changes. Syst Biol 2009; 58:509-26. [PMID: 20525605 DOI: 10.1093/sysbio/syp044] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Two fundamental life cycle types are recognized among hydrozoan cnidarians, the benthic (generally colonial) polyp stage either producing pelagic sexual medusae or directly releasing gametes elaborated from an attached gonophore. The existence of intermediate forms, with polyps producing simple medusoids, has been classically considered compelling evidence in favor of phyletic gradualism. In order to gain insights about the evolution of hydrozoan life history traits, we inferred phylogenetic relationships of 142 species of Thecata (= Leptothecata, Leptomedusae), the most species-rich hydrozoan group, using 3 different ribosomal RNA markers (16S, 18S, and 28S). In conflict with morphology-derived classifications, most thecate species fell in 2 well-supported clades named here Statocysta and Macrocolonia. We inferred many independent medusa losses among Statocysta. Several instances of secondary regain of medusoids (but not of full medusa) from medusa-less ancestors were supported among Macrocolonia. Furthermore, life cycle character changes were significantly correlated with changes affecting colony shape. For both traits, changes did not reflect graded and progressive loss or gain of complexity. They were concentrated in recent branches, with intermediate character states being relatively short lived at a large evolutionary scale. This punctuational pattern supports the existence of 2 alternative stable evolutionary strategies: simple stolonal colonies with medusae (the ancestral strategy, seen in most Statocysta species) versus large complex colonies with fixed gonophores (the derived strategy, seen in most Macrocolonia species). Hypotheses of species selection are proposed to explain the apparent long-term stability of these life history traits despite a high frequency of character change. Notably, maintenance of the medusa across geological time in Statocysta might be due to higher extinction rates for species that have lost this dispersive stage.
Collapse
Affiliation(s)
- Lucas Leclère
- Université Paris 06, UMR 7138/Centre National de la Recherche Scientifique UPMC MNHN IRD, 7 quai St Bernard, Paris, France.
| | | | | | | | | |
Collapse
|
12
|
Voigt O, Erpenbeck D, Wörheide G. A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 2008; 9:350. [PMID: 18655725 PMCID: PMC2518934 DOI: 10.1186/1471-2164-9-350] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 07/26/2008] [Indexed: 01/30/2023] Open
Abstract
Background Animal mitochondrial (mt) genomes are characteristically circular molecules of ~16–20 kb. Medusozoa (Cnidaria excluding Anthozoa) are exceptional in that their mt genomes are linear and sometimes subdivided into two to presumably four different molecules. In the genus Hydra, the mt genome comprises one or two mt chromosomes. Here, we present the whole mt genome sequence from the hydrozoan Hydra magnipapillata, comprising the first sequence of a fragmented metazoan mt genome encoded on two linear mt chromosomes (mt1 and mt2). Results The H. magnipapillata mt chromosomes contain the typical metazoan set of 13 genes for respiratory proteins, the two rRNA genes and two tRNA genes. All genes are unidirectionally oriented on mt1 and mt2, and several genes overlap. The gene arrangement suggests that the two mt chromosomes originated from one linear molecule that separated between nd5 and rns. Strong correlations between the AT content of rRNA genes (rns and rnl) and the AT content of protein-coding genes among 24 cnidarian genomes imply that base composition is mainly determined by mt genome-wide constraints. We show that identical inverted terminal repeats (ITR) occur on both chromosomes; these ITR contain a partial copy or part of the 3' end of cox1 (54 bp). Additionally, both mt chromosomes possess identical oriented sequences (IOS) at the 5' and 3' ends (5' and 3' IOS) adjacent to the ITR. The 5' IOS contains trnM and non-coding sequences (119 bp), whereas the 3' IOS comprises a larger part (mt2) with a larger partial copy of cox1 (243 bp). Conclusion ITR are also documented in the two other available medusozoan mt genomes (Aurelia aurita and Hydra oligactis). In H. magnipapillata, the arrangement of ITR and 5' IOS and 3' IOS suggest that these regions are crucial for mt DNA replication and/or transcription initiation. An analogous organization occurs in a highly fragmented ichthyosporean mt genome. With our data, we can reject a model of mt replication that has previously been proposed for Hydra. This raises new questions regarding replication mechanisms probably employed by all medusozoans, and also has general implications for the expected organization of fragmented linear mt chromosomes of other taxa.
Collapse
Affiliation(s)
- Oliver Voigt
- Courant Research Center Geobiology, Georg-August-Universität Göttingen, Goldschmidtstr, 3, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
13
|
Slow Mitochondrial COI Sequence Evolution at the Base of the Metazoan Tree and Its Implications for DNA Barcoding. J Mol Evol 2008; 66:167-74. [DOI: 10.1007/s00239-008-9069-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
14
|
Kayal E, Lavrov DV. The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 2007; 410:177-86. [PMID: 18222615 DOI: 10.1016/j.gene.2007.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/15/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
The 16,314-nuceotide sequence of the linear mitochondrial DNA (mtDNA) molecule of Hydra oligactis (Cnidaria, Hydrozoa)--the first from the class Hydrozoa--has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs, as is typical for cnidarians. All genes have the same transcriptional orientation and their arrangement in the genome is similar to that of the jellyfish Aurelia aurita. In addition, a partial copy of cox1 is present at one end of the molecule in a transcriptional orientation opposite to the rest of the genes, forming a part of inverted terminal repeat characteristic of linear mtDNA and linear mitochondrial plasmids. The sequence close to at least one end of the molecule contains several homonucleotide runs as well as small inverted repeats that are able to form strong secondary structures and may be involved in mtDNA maintenance and expression. Phylogenetic analysis of mitochondrial genes of H. oligactis and other cnidarians supports the Medusozoa hypothesis but also suggests that Anthozoa may be paraphyletic, with octocorallians more closely related to the Medusozoa than to the Hexacorallia. The latter inference implies that Anthozoa is paraphyletic and that the polyp (rather than a medusa) is the ancestral body type in Cnidaria.
Collapse
Affiliation(s)
- Ehsan Kayal
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
15
|
Shao Z, Graf S, Chaga OY, Lavrov DV. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene 2006; 381:92-101. [PMID: 16945488 DOI: 10.1016/j.gene.2006.06.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/20/2006] [Accepted: 06/23/2006] [Indexed: 11/17/2022]
Abstract
The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.
Collapse
Affiliation(s)
- Zhiyong Shao
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
16
|
Rot C, Goldfarb I, Ilan M, Huchon D. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 2006; 6:71. [PMID: 16972986 PMCID: PMC1618405 DOI: 10.1186/1471-2148-6-71] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 09/14/2006] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). RESULTS A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. CONCLUSION Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.
Collapse
Affiliation(s)
- Chagai Rot
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Itay Goldfarb
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dorothée Huchon
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
17
|
Bandyopadhyay PK, Stevenson BJ, Cady MT, Olivera BM, Wolstenholme DR. Complete mitochondrial DNA sequence of a Conoidean gastropod, Lophiotoma (Xenuroturris) cerithiformis: gene order and gastropod phylogeny. Toxicon 2006; 48:29-43. [PMID: 16806344 DOI: 10.1016/j.toxicon.2006.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 04/13/2006] [Indexed: 11/22/2022]
Abstract
We have determined the first complete nucleotide sequence of the mitochondrial genome of a venomous mollusc, the Conoidean gastropod, Lophiotoma (Xenuroturris) cerithiformis. It is 15,380 nucleotide pairs (ntp) and encodes 13 proteins, two ribosomal RNAs and 22 tRNAs of the mitochondrion's own protein synthesizing system. The protein mRNAs, ribosomal RNAs and 13 of the tRNAs are transcribed from the same strand, the remaining tRNAs from the other strand. The longest segment of unassigned sequence is 139 ntp and includes a 82 ntp segment that is a perfect inverted repeat sequence of 37 ntp separated by 8 nt. The gene arrangement of L. cerithiformis mtDNA shows remarkable similarity to the gene arrangements of mtDNAs of the vetigastropod Haliotis rubra, the polyplacophoran Katharina tunicata and the cephalopod Octopus vulgaris, but differs dramatically from the gene arrangements found in the mtDNAs of pulmonate and opisthobranch gastropods, as well as mtDNAs of bivalves and scaphopods. A single sixteen gene inversion that distinguishes L. cerithiformis mtDNA from mtDNAs of H. rubra, K. tunicata and O. vulgaris is shared by mtDNA of a littorinomorph gastropod Littorina saxitalis, suggesting a close relationship of conoidean and littorinomorph gastropods.
Collapse
Affiliation(s)
- Pradip K Bandyopadhyay
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
18
|
Dunn CW, Pugh PR, Haddock SHD. Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization. Syst Biol 2006; 54:916-35. [PMID: 16338764 DOI: 10.1080/10635150500354837] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Siphonophores are a group of pelagic colonial hydrozoans (Cnidaria) that have long been of general interest because of the division of labor between the polyps and medusae that make up these "superorganisms." These polyps and medusae are each homologous to free living animals but are generated by an incomplete asexual budding process that leaves them physiologically integrated. They are functionally specialized for different tasks and are precisely organized within each colony. The number of functional types of polyps and medusae varies across taxa, and different authors have used this character to construct phylogenies polarized in opposite directions, depending on whether they thought siphonophore evolution proceeded by a reduction or an increase in functional specialization. We have collected taxa across all major groups of siphonophores, many of which are found exclusively in the deep sea, using remotely operated underwater vehicles (ROVs) and by SCUBA diving from ships in the open ocean. We have used 52 siphonophores and four outgroup taxa to estimate the siphonophore phylogeny with molecular data from the nuclear small subunit ribosomal RNA gene (18S) and the mitochondrial large subunit ribosomal RNA gene (16S). Parsimony reconstructions indicate that functionally specialized polyps and medusae have been gained and lost across the phylogeny. Maximum likelihood and Bayesian analyses of morphological data suggest that the transition rate for decreased functional specialization is greater than the transition rate for increased functional specialization for three out of the four investigated categories of polyps and medusae. The present analysis also bears on several long-standing questions about siphonophore systematics. It indicates that the cystonects are sister to all other siphonophores, a group that we call the Codonophora. We also find that the Calycophorae are nested within the Physonectae, and that the Brachystelia, a historically recognized grouping of short-stemmed taxa, are polyphyletic. [Cnidaria; colonial animals; deep sea; division of labor; functional specialization; Hydrozoa; phylogenetics; Siphonophores.].
Collapse
Affiliation(s)
- Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
19
|
Burger G, Forget L, Zhu Y, Gray MW, Lang BF. Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci U S A 2003; 100:892-7. [PMID: 12552117 PMCID: PMC298697 DOI: 10.1073/pnas.0336115100] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animal mtDNAs are typically small (approximately 16 kbp), circular-mapping molecules that encode 37 or fewer tightly packed genes. Here we investigate whether similarly compact mitochondrial genomes are also present in the closest unicellular relatives of animals, i.e., choanoflagellate and ichthyosporean protists. We find that the gene content and architecture of the mitochondrial genomes of the choanoflagellate Monosiga brevicollis, the ichthyosporean Amoebidium parasiticum, and Metazoa are radically different from one another. The circular-mapping choanoflagellate mtDNA with its long intergenic regions is four times as large and contains two times as many protein genes as do animal mtDNAs, whereas the ichthyosporean mitochondrial genome totals >200 kbp and consists of several hundred linear chromosomes that share elaborate terminal-specific sequence patterns. The highly peculiar organization of the ichthyosporean mtDNA raises questions about the mechanism of mitochondrial genome replication and chromosome segregation during cell division in this organism. Considering that the closest unicellular relatives of animals possess large, spacious, gene-rich mtDNAs, we posit that the distinct compaction characteristic of metazoan mitochondrial genomes occurred simultaneously with the emergence of a multicellular body plan in the animal lineage.
Collapse
Affiliation(s)
- Gertraud Burger
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7.
| | | | | | | | | |
Collapse
|
20
|
Fan J, Lee RW. Mitochondrial genome of the colorless green alga Polytomella parva: two linear DNA molecules with homologous inverted repeat Termini. Mol Biol Evol 2002; 19:999-1007. [PMID: 12082120 DOI: 10.1093/oxfordjournals.molbev.a004180] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most of the well-characterized mitochondrial genomes from diverse green algal lineages are circular mapping DNA molecules; however, Chlamydomonas reinhardtii has a linear 15.8 kb unit mitochondrial genome with 580 or 581 bp inverted repeat ends. In mitochondrial-enriched fractions prepared from Polytomella parva (=P. agilis), a colorless, naturally wall-less relative of C. reinhardtii, we have detected two linear mitochondrial DNA (mtDNA) components with sizes of 13.5 and 3.5 kb. Sequences spanning 97% and 86% of the 13.5- and 3.5-kb mtDNAs, respectively, reveal that these molecules contain long, at least 1.3 kb, homologous inverted repeat sequences at their termini. The 3.5-kb mtDNA has only one coding region (nad6), the functionality of which is supported by both the relative rate at which it has accumulated nonsynonymous nucleotide substitutions and its absence from the 13.5-kb mtDNA which encodes nine genes (i.e., large and small subunit rRNA [LSU and SSU rRNA] genes, one tRNA gene, and six protein-coding genes). On the basis of DNA sequence data, we propose that a variant start codon, GTG, is utilized by the P. parva 13.5-kb mtDNA-encoded gene, nad5. Using the relative rate test with Chlamydomonas moewusii (=C. eugametos) as the outgroup, we conclude that the nonsynonymous nucleotide substitution rate in the mitochondrial protein-coding genes of P. parva is on an average about 3.3 times that of the C. reinhardtii counterparts.
Collapse
Affiliation(s)
- Jinshui Fan
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
21
|
Abstract
Forty years ago, soon after yeast mitochondrial DNA (mtDNA) was recognized, some animal versions of mtDNA were shown to comprise circular molecules. Supporting an idea that mitochondria had evolved from bacteria, this finding generated a dogmatic belief that yeast mtDNA was also circular, and the endless linear molecules actually observed in yeast were regarded as broken circles. This concept persisted for 30 years and has distorted our understanding of the true nature of the molecule.
Collapse
Affiliation(s)
- Don Williamson
- Parasitology Division, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|