1
|
Eichenauer T, Simmendinger L, Kluth M, Chirico V, Luebke AM, Höflmayer D, Hinsch A, Jacobsen F, Hube-Magg C, Möller-Koop C, Dahlem R, Fisch M, Rink M, Riechardt S, Tsourlakis MC, Büscheck F, Bernreuther C, Clauditz T, Lebok P, Simon R, Sauter G, Wilczak W, Fraune C. Chromosomal deletion of 9p21 is linked to poor patient prognosis in papillary and clear cell kidney cancer. Urol Oncol 2020; 38:605.e1-605.e8. [PMID: 32241691 DOI: 10.1016/j.urolonc.2020.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND The ongoing approval of adjuvant systemic therapy in high-risk kidney tumor will increase the demand for prognostic assessment in these tumors. 9p21 deletion has been suggested as a possible prognostic feature in clear cell kidney cancer. MATERIAL AND METHODS To learn more on the prognostic relevance of 9p21 deletions in clear cell and other kidney tumors, 1,809 kidney tumor specimens were analyzed by dual-labeling fluorescence in situ hybridization (FISH) with probes for 9p21 and centromere 9 in a tissue microarray format. Results were compared to histologic tumor type, pT stage, grade, and patient outcome. RESULTS A total of 1,341 (74%) of tumor samples had interpretable FISH results. 9p21 deletion was found in 4.4% of 894 clear cell, 5.1% of 197 papillary, and 4.2% of 71 chromophobe carcinomas. 9p21 deletions were not found in 112 oncocytomas and in 21 clear cell tubulo-papillary cancers. In clear cell carcinomas, 9p deletions were associated with advanced stage (P = 0.009) and nodal metastasis (P = 0.0067), but not with ISUP grade (P = 0.1039) and distant metastasis (P = 0.4809). Also, in papillary carcinomas, 9p deletions were associated with advanced stage (P = 0.0008) and nodal metastasis (P = 0.0202) but not with ISUP grade (0.0904) and distant metastasis (P = 0.2022). Follow-up data were available for 789 clear cell and 177 papillary cancers. In both tumor entities, 9p21 deletions were associated with shortened overall survival, tumor-specific death, and progression-free survival in univariate analysis (P < 0.02 each). In a multivariate analysis, 9p21 deletion was an independent predictor of early tumor recurrence (P = 0.04). CONCLUSION 9p21 deletions, 9p21 deletions identify a small subset of aggressive renal carcinomas. 9p deletion assessment may be clinically useful to identify high-risk renal cell carcinomas.
Collapse
Affiliation(s)
- Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Simmendinger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Riechardt
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
|
3
|
Ren Y, Xiao L, Weng G, Shi B. Clinical significance of p16INK4A and p14ARF promoter methylation in renal cell carcinoma: a meta-analysis. Oncotarget 2017; 8:64385-64394. [PMID: 28969078 PMCID: PMC5610010 DOI: 10.18632/oncotarget.18826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022] Open
Abstract
The inactivation of p16INK4A and p14ARF via promoter methylation has been investigated in various cancers. However, the clinical effects of p16INK4A and p14ARF promoter methylation on renal cell carcinoma (RCC) remain to be clarified. The pooled data were calculated and summarized. Finally, an investigation of 14 eligible studies with 1231 RCC patients and 689 control patients was performed. Methylated p16INK4A and p14ARF were observed to be significantly higher in RCC than in control subjects without malignancies (OR = 2.77, P = 0.005; OR = 11.73, P < 0.001, respectively). Methylated p16INK4A was significantly associated with the risk of RCC in the tissue subgroup, but not in the serum and urine subgroups. Methylated p16INK4A was significantly associated with tumor size. We did not find that p16INK4A promoter methylation was associated with sex, tumor grade, lymph node status, and tumor histology. Methylated p14ARF was significantly correlated with sex and tumor histology. Three studies reported that p16INK4A methylation was not significantly correlated with the prognosis of RCC. The results suggested that p16INK4A and p14ARF promoter methylation may be correlated with the carcinogenesis of RCC, and that methylated p14ARF , especially, can be a major susceptibility gene. We also found the different clinicopathological significance of 16INK4A and p14ARF in RCC. Additional studies with sufficient data are essential to further evaluate the clinical features and prognostic effect of p16INK4A and p14ARF promoter methylation in RCC.
Collapse
Affiliation(s)
- Yu Ren
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo 315000, People's Republic of China
| | - Li Xiao
- Department of Urologic Surgery, Chinese PLA General Hospital, The 309th Hospital of China People's Liberation Army, Beijing 100094, People's Republic of China
| | - Guobin Weng
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo 315000, People's Republic of China
| | - Bingyi Shi
- Department of Urologic Surgery, Chinese PLA General Hospital, The 309th Hospital of China People's Liberation Army, Beijing 100094, People's Republic of China
| |
Collapse
|
4
|
Shenoy N, Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann Oncol 2016; 27:1685-95. [PMID: 27329246 DOI: 10.1093/annonc/mdw241] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for ∼80% of all RCC, and biallelic Von Hippel-Lindau (VHL) gene defects occur in ∼75% of sporadic ccRCC. The etiopathogenesis of VHL mutant metastatic RCC, based on our understanding to date of molecular mechanisms involved, is a sequence of events which can be grouped under the following: (i) loss of VHL activity (germline/somatic mutation + inactivation of the wild-type copy); (ii) constitutive activation of the hypoxia-inducible factor (HIF) pathway due to loss of VHL activity and transcription of genes involved in angiogenesis, epithelial-mesenchymal transition, invasion, metastasis, survival, anaerobic glycolysis and pentose phosphate pathway; (iii) interactions of the HIF pathway with other oncogenic pathways; (iv) genome-wide epigenetic changes (potentially driven by an overactive HIF pathway) and the influence of epigenetics on various oncogenic, apoptotic, cell cycle regulatory and mismatch repair pathways (inhibition of multiple tumor suppressor genes); (v) immune evasion, at least partially caused by changes in the epigenome. These mechanisms interact throughout the pathogenesis and progression of disease, and also confer chemoresistance and radioresistance, making it one of the most difficult metastatic cancers to treat. This article puts together the sequential pathogenesis of VHL mutant ccRCC by elaborating these mechanisms and the interplay of oncogenic pathways, epigenetics, metabolism and immune evasion, with a perspective on potential therapeutic strategies. We reflect on the huge gap between our understanding of the molecular biology and currently accepted standard of care in metastatic ccRCC, and present ideas for better translational research involving therapeutic strategies with combinatorial drug approach, targeting different aspects of the pathogenesis.
Collapse
Affiliation(s)
- N Shenoy
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - L Pagliaro
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| |
Collapse
|
5
|
Liu Q, Jin J, Ying J, Sun M, Cui Y, Zhang L, Xu B, Fan Y, Zhang Q. Frequent epigenetic suppression of tumor suppressor gene glutathione peroxidase 3 by promoter hypermethylation and its clinical implication in clear cell renal cell carcinoma. Int J Mol Sci 2015; 16:10636-49. [PMID: 25970749 PMCID: PMC4463666 DOI: 10.3390/ijms160510636] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 02/07/2023] Open
Abstract
The goal of this study is to identify novel tumor suppressor genes silenced by promoter methylation in clear cell renal cell carcinoma (ccRCC) and discover new epigenetic biomarkers for early cancer detection. Reactive oxygen species (ROS) is a major cause of DNA damage that correlates with cancer initiation and progression. Glutathione peroxidase 3 (GPX3), the only known extracellular glycosylated enzyme of GPXs, is a major scavenger of ROS. GPX3 has been identified as a tumor suppressor in many cancers. However, the role of GPX3 in ccRCC remains unclear. This study aimed to investigate its epigenetic alteration in ccRCC and possible clinicopathological association. In our study, GPX3 methylation and down-regulation were detected in 5 out of 6 ccRCC cell lines and the GPX3 mRNA and protein expression level in ccRCC tumors was significantly lower than in adjacent non-malignant renal tissues (p < 0.0001). Treatment with 5-Aza-2'-deoxycytidine restored GPX3 expression in ccRCC cells. Aberrant methylation was further detected in 77.1% (162/210) of RCC primary tumors, but only 14.6% (7/48) in adjacent non-malignant renal tissues. GPX3 methylation status was significantly associated with higher tumor nuclear grade (p = 0.014). Thus, our results showing frequent GPX3 inactivation by promoter hypermethylation in ccRCC may reveal the failure in the cellular antioxidant system in ccRCC and may be associated with renal tumorigenesis. GPX3 tumor specific methylation may serve as a biomarker for early detection and prognosis prediction of ccRCC.
Collapse
Affiliation(s)
- Qianling Liu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing 100021, China.
| | - Mengkui Sun
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| | - Yun Cui
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| | - Lian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| | - Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| | - Yu Fan
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| |
Collapse
|
6
|
El-Mokadem I, Fitzpatrick J, Bondad J, Rauchhaus P, Cunningham J, Pratt N, Fleming S, Nabi G. Chromosome 9p deletion in clear cell renal cell carcinoma predicts recurrence and survival following surgery. Br J Cancer 2014; 111:1381-90. [PMID: 25137021 PMCID: PMC4183850 DOI: 10.1038/bjc.2014.420] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Wider clinical applications of 9p status in clear cell renal cell carcinoma (ccRCC) are limited owing to the lack of validation and consensus for interphase fluorescent in situ hybridisation (I-FISH) scoring technique. The aim of this study was to analytically validate the applicability of I-FISH in assessing 9p deletion in ccRCC and to clinically assess its long-term prognostic impact following surgical excision of ccRCC. Methods: Tissue microarrays were constructed from 108 renal cell carcinoma (RCC) tumour paraffin blocks. Interphase fluorescent in situ hybridisation analysis was undertaken based on preset criteria by two independent observers to assess interobserver variability. 9p status in ccRCC tumours was determined and correlated to clinicopathological variables, recurrence-free survival and disease-specific survival. Results: There were 80 ccRCCs with valid 9p scoring and a median follow-up of 95 months. Kappa statistic for interobserver variability was 0.71 (good agreement). 9p deletion was detected in 44% of ccRCCs. 9p loss was associated with higher stage, larger tumours, necrosis, microvascular and renal vein invasion, and higher SSIGN (stage, size, grade and necrosis) score. Patients with 9p-deleted ccRCC were at a higher risk of recurrence (P=0.008) and RCC-specific mortality (P=0.001). On multivariate analysis, 9p deletion was an independent predictor of recurrence (hazard ratio 4.323; P=0.021) and RCC-specific mortality (hazard ratio 4.603; P=0.007). The predictive accuracy of SSIGN score improved from 87.7% to 93.1% by integrating 9p status to the model (P=0.001). Conclusions: Loss of 9p is associated with aggressive ccRCC and worse prognosis in patients following surgery. Our findings independently confirm the findings of previous reports relying on I-FISH to detect 9p (CDKN2A) deletion.
Collapse
Affiliation(s)
- I El-Mokadem
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Fitzpatrick
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Bondad
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - P Rauchhaus
- Division of Population Sciences, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Cunningham
- Department of Clinical Genetics, NHS Tayside Health Board, Dundee DD1 9SY, UK
| | - N Pratt
- Department of Clinical Genetics, NHS Tayside Health Board, Dundee DD1 9SY, UK
| | - S Fleming
- Department of Pathology, Medical Research Institute, School of Medicine, Dundee DD1 9SY, UK
| | - G Nabi
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
7
|
Zhang Q, Zhang L, Li L, Wang Z, Ying J, Fan Y, Xu B, Wang L, Liu Q, Chen G, Tao Q, Jin J. Interferon regulatory factor 8 functions as a tumor suppressor in renal cell carcinoma and its promoter methylation is associated with patient poor prognosis. Cancer Lett 2014; 354:227-34. [PMID: 25109451 DOI: 10.1016/j.canlet.2014.07.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022]
Abstract
Interferon regulatory factor 8 (IRF8), as a central element of IFN-γ-signaling, plays a critical role in tumor suppression. However, its expression and underlying molecular mechanism remain elusive in renal cell carcinoma (RCC). Here, we examined IRF8 expression and methylation in RCC cell lines and primary tumors, and further assessed its tumor suppressive functions. We found that IRF8 was widely expressed in human normal tissues including kidney, but frequently downregulated by promoter methylation in RCC cell lines. IRF8 methylation was detected in 25% of primary tumors, but not in adjacent non-malignant renal tissues, and associated with higher tumor nuclear grade of RCC. Ectopic expression of IRF8 inhibited colony formation and migration abilities of RCC cells, through inducing cell cycle G2/M arrest and apoptosis. IFN-γ could induce IRF8 expression in RCC cells, together with increased cleaved-PARP. We further found that IRF8 inhibited expression of oncogenes YAP1 and Survivin, as well as upregulated expression of tumor suppressor genes CASP1, p21 and PTEN. Collectively, our data demonstrate that IRF8 as a functional tumor suppressor is frequently methylated in RCC, and IRF8-mediated interferon signaling is involved in RCC pathogenesis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Lian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - LiLi Li
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong
| | - Zhaohui Wang
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Lu Wang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Qianling Liu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Guangfu Chen
- Department of Urology, PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Qian Tao
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong.
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| |
Collapse
|
8
|
Kondratov AG, Kvasha SM, Stoliar LA, Romanenko AM, Zgonnyk YM, Gordiyuk VV, Kashuba EV, Rynditch AV, Zabarovsky ER, Kashuba VI. Alterations of the WNT7A gene in clear cell renal cell carcinomas. PLoS One 2012; 7:e47012. [PMID: 23056560 PMCID: PMC3466251 DOI: 10.1371/journal.pone.0047012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/11/2012] [Indexed: 12/15/2022] Open
Abstract
WNT7A (wingless-type MMTV integration site family, member 7A) is a known tumor suppressor gene of non-small cell lung carcinomas (NSCLC) and is frequently inactivated due to CpG-island hypermethylation in human cancers. The members of WNT family are involved in cell signaling and play crucial roles in cancer development. In the present work hypermethylation of the WNT7A gene was detected in 66% (29/44) of analyzed clear cell renal cell carcinomas (RCCs) using methyl-specific PCR (MSP). Moreover, bisulfite sequencing confirmed intensive hypermethylation of the 5'-CpG island of the WNT7A gene. Methylation analysis revealed positive correlations between tumor stage, Fuhrman nuclear grade and WNT7A hypermethylation. Additionally, restoration of WNT7A gene expression in the A498 cell line by 5-aza-2'-deoxycytidine treatment confirmed a direct contribution of hypermethylation in silencing of the WNT7A gene. High frequency of loss of heterozygosity (LOH) was demonstrated on chromosome 3p25 in regions surrounding the WNT7A gene. The frequent down-regulation of WNT7A gene expression was detected in 88% (15/17) of clear cell RCCs. We have also shown that the WNT7A gene possesses tumor suppression function by colony-formation and cell proliferation assays in RCC cell lines. In summary, the WNT7A gene is inactivated by genetic/epigenetic alterations in clear cell RCC and demonstrates tumor suppressor properties.
Collapse
Affiliation(s)
- Aleksandr G Kondratov
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Science, Kyiv, Ukraine.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Maruschke M, Thur S, Kundt G, Nizze H, Hakenberg O. Immunohistochemical Expression of Retinoblastoma Protein and p16 in Renal Cell Carcinoma. Urol Int 2011; 86:60-7. [DOI: 10.1159/000320510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 08/20/2010] [Indexed: 11/19/2022]
|
10
|
Abstract
Aberrant DNA methylation, in particular promoter hypermethylation and transcriptional silencing of tumor suppressor genes, has an important role in the development of many human cancers, including renal cell carcinoma (RCC). Indeed, apart from mutations in the well studied von Hippel-Lindau gene (VHL), the mutation frequency rates of known tumor suppressor genes in RCC are generally low, but the number of genes found to show frequent inactivation by promoter methylation in RCC continues to grow. Here, we review the genes identified as epigenetically silenced in RCC and their relationship to pathways of tumor development. Increased understanding of RCC epigenetics provides new insights into the molecular pathogenesis of RCC and opportunities for developing novel strategies for the diagnosis, prognosis and management of RCC.
Collapse
|
11
|
Zhang Q, Ying J, Li J, Fan Y, Poon FF, Ng KM, Tao Q, Jin J. Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J Urol 2010; 184:731-7. [PMID: 20639048 DOI: 10.1016/j.juro.2010.03.108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Indexed: 12/31/2022]
Abstract
PURPOSE Identifying tumor suppressor genes silenced by promoter CpG methylation uncovers mechanisms of tumorigenesis and identifies new epigenetic biomarkers for early cancer detection. DLEC1 is located at 3p22.3, a critical tumor suppressor gene locus for renal cell carcinoma. We explored its epigenetic alteration in renal cell carcinoma and possible clinicopathological association. MATERIALS AND METHODS We examined DLEC1 expression and methylation by semiquantitative reverse transcriptase and methylation specific polymerase chain reaction in 9 renal cell carcinoma cell lines and 81 primary tumors. We also analyzed the relationship between DLEC1 methylation and clinicopathological features in patients with renal cell carcinoma. We assessed DLEC1 inhibition of renal cell carcinoma cell growth by colony formation assay. RESULTS DLEC1 methylation and down-regulation were detected in all renal cell carcinoma cell lines. Treatment with 5-aza-2'-deoxycytidine (Sigma) and/or trichostatin A (Cayman Chemical, Ann Arbor, Michigan) reversed methylation and restored DLEC1 expression, indicating that methylation directly mediates its silencing. Aberrant methylation was further detected in 25 of 81 primary tumors (31%) but only 1 of 53 nonmalignant renal tissues (2%) showed methylation. DLEC1 methylation status was significantly associated with TNM classification and grade in patients with renal cell carcinoma (chi-square test p = 0.01 and 0.04, respectively). DLEC1 ectopic expression in silenced renal cell carcinoma cells resulted in substantial tumor cell clonogenicity inhibition. CONCLUSIONS To our knowledge we report for the first time that DLEC1 is often down-regulated by CpG methylation and shows tumor inhibitory function in renal cell carcinoma cells, indicating its role as a tumor suppressor. DLEC1 tumor specific methylation may serve as a biomarker for early detection and prognosis prediction of this tumor.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen M, Ye Y, Yang H, Tamboli P, Matin S, Tannir NM, Wood CG, Gu J, Wu X. Genome-wide profiling of chromosomal alterations in renal cell carcinoma using high-density single nucleotide polymorphism arrays. Int J Cancer 2009; 125:2342-8. [PMID: 19521957 DOI: 10.1002/ijc.24642] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of genetic aberrations may help understand the mechanisms of tumorigenesis and has important implications in diagnosis, prognosis and treatment. We applied Illumina's 317K high-density single nucleotide polymorphism (SNP) arrays to profile chromosomal aberrations in clear cell renal cell carcinoma (ccRCC) from 80 patients and analyzed the association of LOH/amplification events with clinicopathological characteristics and telomere length. The most common loss of heterozygosity (LOH) were 3p (69 cases) including 38 whole 3p arm losses, 30 large fragment LOH (spanning 3p21-36), and 1 interstitial LOH (spanning 3p12-14, 3p21-22, 3p24.1-24.2 and 3p24.3), followed by chromosome losses at 8p12-pter, 6q23.3-27, 14q24.1-qter, 9q32-qter, 10q22.3-qter, 9p13.3-pter, 4q28.3-qter and 13q12.1-21.1. We also found several smallest overlapping regions of LOH that contained tumor suppressor genes. One smallest LOH in 8p12 had a size of 0.29 Mb and only contained one gene (NRG1). The most frequent chromosome gains were at 5q (32 cases), including 10 whole 5q amplification, 21 large amplifications encompassing 5q32-ter and 1 focal amplification in 5q35.3 (0.42 Mb). The other common chromosome gains were 1q25.1-qter, 7q21.13-qter, 8q24.12-qter and whole 7p arm. Significant associations of LOH at 9p, 9q, 14q and 18q were observed with higher nuclear grade. Significant associations with tumor stage were observed for LOH at 14q, 18p and 21q. Finally, we found that tumors with LOH at 2q, 6p, 6q, 9p, 9q and 17p had significantly shorter telomere length than those without LOH. This is the first study to use Illumina's SNP-CGH array that provides a close estimate of the size and frequency of chromosome LOH and amplifications of ccRCC. The identified regions and genes may become diagnostic and prognostic biomarkers as well as potential targets of therapy.
Collapse
Affiliation(s)
- Meng Chen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hagiwara H, Sato H, Ohde Y, Takano Y, Seki T, Ariga T, Hokaiwado N, Asamoto M, Shirai T, Nagashima Y, Yano T. 5-Aza-2'-deoxycytidine suppresses human renal carcinoma cell growth in a xenograft model via up-regulation of the connexin 32 gene. Br J Pharmacol 2008; 153:1373-81. [PMID: 18264126 PMCID: PMC2437922 DOI: 10.1038/bjp.2008.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/10/2007] [Accepted: 12/18/2007] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The connexin (Cx) 32 gene, a member of the gap junction gene family, acts as a tumour suppressor gene in human renal cell carcinoma (RCC) and is down-regulated by the hypermethylation of CpG islands in a promoter region of the Cx gene. The current study investigated whether the restoration of Cx32 silenced by hypermethylation in RCC by a DNA demethylating agent could be an effective treatment against RCC. EXPERIMENTAL APPROACH Using nude mice bearing Caki-1 cells (a human metastatic RCC cell line), the effects of 5-aza-2'-deoxycytidine (5-aza-CdR), a DNA demethylase inhibitor, on Cx32 mRNA expression and tumour growth were examined by RT-PCR, and by measuring tumour weight and volume. Cx32 expression in Caki-1 tumours was inhibited by Cx32 short interfering (si) RNA, and the effect of siRNA on 5-aza-CdR-dependent suppression of tumour growth in nude mice was evaluated. KEY RESULTS 5-aza-CdR treatment inhibited the growth of Caki-1 cells in nude mice by 70% and increased 7-fold the level of Cx32 mRNA. The intratumour injection of Cx32 siRNA almost totally inhibited the expression of Cx32 mRNA and significantly reduced the suppression of tumour growth in 5-aza-CdR-treated nude mice. CONCLUSIONS AND IMPLICATIONS 5-aza-CdR suppressed the growth of Caki-1 tumours in a xenograft model, by restoring Cx32 expression. This finding suggests that treatment with 5-aza-CdR could be a new effective therapy against human metastatic RCC and that Cx32 could be a potential target for the treatment of RCC.
Collapse
Affiliation(s)
- H Hagiwara
- Project for Complementary Factors, National Institute of Health and Nutrition Shinjuku, Tokyo, Japan
| | - H Sato
- Project for Complementary Factors, National Institute of Health and Nutrition Shinjuku, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, Japan
| | - Y Ohde
- Project for Complementary Factors, National Institute of Health and Nutrition Shinjuku, Tokyo, Japan
- College of Bioresource Sciences, Nihon University Fujisawa, Kanagawa, Japan
| | - Y Takano
- Project for Complementary Factors, National Institute of Health and Nutrition Shinjuku, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, Japan
| | - T Seki
- College of Bioresource Sciences, Nihon University Fujisawa, Kanagawa, Japan
| | - T Ariga
- College of Bioresource Sciences, Nihon University Fujisawa, Kanagawa, Japan
| | - N Hokaiwado
- Department of Experimental Pathology and Tumour Biology, Nagoya City University Graduate School of Medical Science Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - M Asamoto
- Department of Experimental Pathology and Tumour Biology, Nagoya City University Graduate School of Medical Science Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - T Shirai
- Department of Experimental Pathology and Tumour Biology, Nagoya City University Graduate School of Medical Science Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Y Nagashima
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine Kanazawa-ku, Yokohama, Japan
| | - T Yano
- Project for Complementary Factors, National Institute of Health and Nutrition Shinjuku, Tokyo, Japan
| |
Collapse
|
14
|
Baldewijns MML, van Vlodrop IJH, Schouten LJ, Soetekouw PMMB, de Bruïne AP, van Engeland M. Genetics and epigenetics of renal cell cancer. Biochim Biophys Acta Rev Cancer 2007; 1785:133-55. [PMID: 18187049 DOI: 10.1016/j.bbcan.2007.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/04/2007] [Accepted: 12/09/2007] [Indexed: 12/31/2022]
Abstract
Renal cell carcinoma (RCC) is not a single disease, but comprises a group of tumors of renal epithelial origin, each with a different histology, displaying a different clinical course and caused by different genetic alterations. Since cure rates are inversely associated with stage and response to the available treatment regimes is limited to a subgroup of patients, diagnostic methods facilitating early detection and new therapeutic modalities are necessary. Increased knowledge of the underlying pathophysiology of RCC has resulted in the identification of genetic alterations involved in renal cell cancer carcinogenesis. Promising agents to target these pathways, especially the angiogenesis pathway, are being developed, some of which are already standard of care. In addition to genetics, knowledge on epigenetics in the process of renal tumorigenesis has been significantly increased in the last decades. Epigenetics will play an increasing role in the development of new therapeutic modalities and may deliver new prognostic and early diagnostic markers. In this review we discuss the background of RCC and the clinical applications of RCC genetics and epigenetics.
Collapse
Affiliation(s)
- Marcella M L Baldewijns
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Ikuerowo SO, Kuczyk MA, von Wasielewski R, Shittu OB, Jonas U, Machtens S, Serth J. p16INK4a Expression and Clinicopathologic Parameters in Renal Cell Carcinoma. Eur Urol 2007; 51:732-7; discussion 738. [PMID: 16949731 DOI: 10.1016/j.eururo.2006.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/08/2006] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The tumour suppressor gene p16INK4a is a cyclin-dependent kinase inhibitor, for which inactivation attributable to promoter hypermethylation or homozygous deletion has been described in malignancies. Little is known about p16INK4a protein levels in renal cell carcinoma (RCC) and its association with clinicopathologic parameters or disease progression. METHODS The expression of the p16INK4a gene was analysed with the use of immunohistochemistry and tissue microarrays (TMA). Tissue cores were obtained from the primary tumour itself, the tumoural invasion front, and histologically benign peritumoural tissue of 397 nephrectomies. For statistical analysis, sections were classified into four groups according to the relative amount of positively stained cells: negative (0%), low (1-10%), intermediate (11-50%), and high positivity (>50%). Follow-up data were analyzed for 198 patients (follow-up period: 2-240 mo; median: 138 mo). RESULTS Absent or low expression of p16INK4a was observed in 82% of tumour samples. No statistically significant association was found between protein levels detected in tumour, invasion front, or normal renal tissues and any of the clinicopathologic variables. Survival analysis by Kaplan-Meier revealed a significant association between high expression (>50%) of p16INK4a in tumours and better disease-specific survival (p=0.03, log-rank test). Cox regression analysis showed that p16INK4a expression is an independent covariate in disease-specific survival (p<0.01). CONCLUSIONS The absence of p16INK4a expression in most tumour cells indicates that p16INK4a could be involved in the tumourigenesis of RCC. Immunohistochemically detected positivity for p16INK4a is a positive prognosticator for specific survival in both uni- and multivariate analyses.
Collapse
Affiliation(s)
- Stephen O Ikuerowo
- Department of Urology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang Q, Ying J, Zhang K, Li H, Ng KM, Zhao Y, He Q, Yang X, Xin D, Liao SK, Tao Q, Jin J. Aberrant methylation of the 8p22 tumor suppressor gene DLC1 in renal cell carcinoma. Cancer Lett 2006; 249:220-6. [PMID: 17029774 DOI: 10.1016/j.canlet.2006.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 08/18/2006] [Accepted: 08/25/2006] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin remodeling are important in silencing tumor suppressor genes (TSG) in various malignancies, including renal cell carcinoma (RCC). DLC1 (deleted in liver cancer 1)/ARHGAP7 is a recently identified 8p22 candidate TSG. Frequent methylation of the DLC1 promoter with resultant gene silencing has been reported in several tumors, but not in RCC yet. We examined DLC1 promoter methylation in 34 primary RCCs and the corresponding non-malignant tissues, and the correlation of DLC1 methylation with the clinicopathological characteristics of RCC patients. Although DLC1 methylation and downregulation were only detected in one of seven RCC cell lines using methylation-specific PCR (MSP) and semi-quantitative reverse-transcription PCR, we found that the DLC1 promoter was methylated in 35% (12/34) of primary RCC tumors, which was further confirmed by direct sequencing of MSP products and high-resolution bisulfite genomic sequencing. In contrast, only one of the 34 (3%) non-malignant renal tissues had weak methylation. Aberrant DLC1 methylation appeared to be a relatively early event during renal tumorigenesis since 33% of the RCC tumors with pT1 (TNM staging) showed methylation, which is similar to other late stage tumors. Thus, our results demonstrated that DLC1 methylation occurs in a subset of RCC tumors and may play a role in renal carcinogenesis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kashyap MK, Kumar A, Emelianenko N, Kashyap A, Kaushik R, Huang R, Khullar M, Sharma SK, Singh SK, Bhargave AK, Upadhyaya SK. Biochemical and molecular markers in renal cell carcinoma: an update and future prospects. Biomarkers 2005; 10:258-94. [PMID: 16191485 DOI: 10.1080/13547500500218534] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a big problem in the developed world as well as in developing countries. Renal cell carcinoma (RCC) accounts for approximately 3% of adult malignancies and 90-95% of neoplasms arising from the kidney. RCC is more common in men than in women (2:1), and it most often occurs in patients between the ages of 50-70 years. In all cancers the cancerous cells release particular kind of proteins (called tumour markers) and blood tests are used to detect the presence of these markers. These tumour markers nowadays are an area of interest for oncologists who search for a possible solution in the detection and treatment of RCC. Different kinds of biochemical and molecular markers such as ferritin, MN/CA9, apoptotic index, p53, IL-2, gamma-enolase, CD44, CD95, chromosome instability and loss of heterozygosity have been tested in RCC, but so far no marker fulfils one or the other criteria to be considered as an ideal marker for RCC. This review gives basic and updated information about the different kinds of biomarkers studied in RCC and about the role implementation of genomics and proteomics in RCC.
Collapse
Affiliation(s)
- M K Kashyap
- Department of Veterinary Biosciences, University of Illinois, Urbana-Champaign, IL 61802, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|