1
|
Ambreetha S, Zincke D, Balachandar D, Mathee K. Genomic and metabolic versatility of Pseudomonas aeruginosa contributes to its inter-kingdom transmission and survival. J Med Microbiol 2024; 73. [PMID: 38362900 DOI: 10.1099/jmm.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors produced by P. aeruginosa includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent colonization and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic secondary infections triggered by hospital-acquired P. aeruginosa. On the contrary, this bacterium can improve plant growth by suppressing phytopathogens and insects. Notably, P. aeruginosa is one of the very few bacteria capable of trans-kingdom transmission and infection. Transfer of P. aeruginosa strains from plant materials to hospital wards, animals to humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated P. aeruginosa strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic factors that facilitate the dominance of P. aeruginosa across different biological kingdoms and the varying roles of this bacterium in plant and human health.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Diansy Zincke
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
Ambreetha S, Balachandar D. Pathogenesis of plant-associated Pseudomonas aeruginosa in Caenorhabditis elegans model. BMC Microbiol 2022; 22:269. [DOI: 10.1186/s12866-022-02682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Pseudomonas aeruginosa is a globally dreaded pathogen that triggers fatality in immuno-compromised individuals. The agricultural ecosystem is a massive reservoir of this bacterium, and several studies have recommended P. aeruginosa to promote plant growth. However, there were limited attempts to evaluate the health risks associated with plant-associated P. aeruginosa. The current study hypothesized that agricultural P. aeruginosa strains exhibit eukaryotic pathogenicity despite their plant-beneficial traits.
Results
We have demonstrated that feeding with the plant-associated P. aeruginosa strains significantly affects Caenorhabditis elegans health. Out of the 18 P. aeruginosa strain tested, PPA03, PPA08, PPA10, PPA13, PPA14, PPA17, and PPA18 isolated from cucumber, tomato, eggplant, and chili exhibited higher virulence and pathogenicity. Correlation studies indicated that nearly 40% of mortality in C. elegans was triggered by the P. aeruginosa strains with high levels of pyocyanin (> 9 µg/ml) and biofilm to planktonic ratio (> 8).
Conclusion
This study demonstrated that plant-associated P. aeruginosa could be a potential threat to human health similar to the clinical strains. Pyocyanin could be a potential biomarker to screen the pathogenic P. aeruginosa strains in the agricultural ecosystem.
Collapse
|
3
|
Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100084. [PMID: 34917993 PMCID: PMC8645841 DOI: 10.1016/j.crmicr.2021.100084] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Fluorescent and non-fluorescent species of Pseudomonas are important for plant growth promotion, phytopathogenic control and plant disease management. Pseudomonas belong to Pseudomonadaceae family (10 groups on the basis of rRNA-DNA hybridization) classified into 6-subgroups of rRNA gene homology and RFLP. Pseudomonas species produce antagonistic mechanism such as ISR and compounds like cell wall degradation enzymes, and antibiotics to maintain a mutualistic relationship with the associated plant. Pseudomonas sp. synthesize auxins having properties similar to phytohormones like IAA, which act as signaling molecules for regulating plant growth.
Numerous microbial communities show synergistic and antagonistic interactions among themselves, resulting in benefit and harm to either or both the associated members. The association holds accountability for nutrients recycling and energy drift, resulting in the availability of macronutrients unavailable and insoluble forms of rhizospheric nutrients, crucial for vital processes in plants, e.g., act as co-factors of various phyto-enzyme and redox mediators. Plant growth promoting rhizobacteria are known to enhance plant growth by increasing these macronutrients availability during their plant root colonization. In comparison to any other genera, Pseudomonas is the most favored bioinoculant due to its significant properties in both plant growth and phytopathogen control during its synergistic association with the host plant. These properties include siderophore production, phosphate solubilization, nitrogen fixation, phenazines, antibiotics, and induced systemic resistance carried out by various Pseudomonas species like Pseudomonas fluorescens, Pseudomonas putida, and Pseudomonas syringae. The association of Pseudomonas with crop plants procures several secretory and electron-based feedback mechanisms in order to regulate the plant growth and phytopathogen control activities through the secretion of several phytohormones (auxins, gibberellins, Indole-3-acetic acid), secondary metabolites (flavonoids) and enzymes (aminocyclopropane-1-carboxylate, phenylalanine ammonia-lyase). Ecologically significant applications of Pseudomonas in biocontrol and bioaugmentation are crucial for maintaining food security.
Collapse
|
4
|
Ambreetha S, Marimuthu P, Mathee K, Balachandar D. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates. J Appl Microbiol 2021; 132:3226-3248. [PMID: 34608722 DOI: 10.1111/jam.15317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023]
Abstract
AIM Pseudomonas aeruginosa, a leading opportunistic pathogen causing hospital-acquired infections, is also commonly found in agricultural settings. However, there are minimal attempts to examine the molecular and functional attributes shared by agricultural and clinical strains of P. aeruginosa. This study investigates the presence of P. aeruginosa in edible vegetable plants (including salad vegetables) and analyses the evolutionary and metabolic relatedness of the agricultural and clinical strains. METHODS AND RESULTS Eighteen rhizospheric and endophytic P. aeruginosa strains were isolated from cucumber, tomato, eggplant, and chili directly from the farms. The identity of these strains was confirmed using biochemical and molecular assays. The genetic and metabolic traits of these plant-associated P. aeruginosa isolates were compared with clinical strains. DNA fingerprinting and 16S rDNA-based phylogenetic analyses revealed that the plant- and human-associated strains are evolutionarily related. Both agricultural and clinical isolates possessed plant-beneficial properties, including mineral solubilization to release essential nutrients (phosphorous, potassium, and zinc), ammonification, and the ability to release extracellular pyocyanin, siderophore, and indole-3 acetic acid. CONCLUSION These findings suggest that rhizospheric and endophytic P. aeruginosa strains are genetically and functionally analogous to the clinical isolates. In addition, the genotypic and phenotypic traits do not correlate with plant sources or ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY This study reconfirms that edible plants are the potential source for human and animal transmission of P. aeruginosa.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.,Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Ponnusamy Marimuthu
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
5
|
Ha DD, Nguyen TO. Application of Methylopila sp. DKT for Bensulfuron-methyl Degradation and Peanut Growth Promotion. Curr Microbiol 2020; 77:1466-1475. [PMID: 32219473 DOI: 10.1007/s00284-020-01953-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/13/2020] [Indexed: 11/24/2022]
Abstract
Bensulfuron-methyl is an herbicide widely used for weed control although its residues cause damage to other crops during crop rotations. In this study, the biodegrading activity of bensulfuron-methyl by a plant growth-promoting bacterial strain was carried out. Methylopila sp. DKT isolated from soil was determined for bensulfuron-methyl degradation and phosphate solubilization in the liquid media and soil. Moreover, the effects of the herbicide on peanut development and the role of Methylopila sp. DKT on the growth promotion of peanut were investigated. The results showed that the isolate effectively utilized the compound as a sole carbon source and solubilized low soluble inorganic phosphates. Methylopila sp. DKT also utilized 2-amino-4,6-dimethoxypyrimidine, a metabolite of bensulfuron-methyl degradation, as a sole carbon and energy source, and released ammonium and nitrate. The supplementation with Methylopila sp. DKT in soil increased the peanut biomass and the phosphorus content in the plant. In addition, the inoculation with Methylopila sp. DKT in soil and peanut cultivation increased the bensulfuron-methyl degradation by 57.7% for 1 month, which suggests that both plants and the bacterial isolate play a key role in herbicide degradation. These results indicate that the studied strain has a high potential for soil remediation and peanut growth promotion.
Collapse
Affiliation(s)
- Danh Duc Ha
- Dong Thap University, Pham Huu Lau Str., Cao Lanh City, 870000, Dong Thap Province, Viet Nam.
| | - Thị Oanh Nguyen
- Dong Thap University, Pham Huu Lau Str., Cao Lanh City, 870000, Dong Thap Province, Viet Nam
| |
Collapse
|
6
|
Sun T, Li M, Saleem M, Zhang X, Zhang Q. The fungicide "fluopyram" promotes pepper growth by increasing the abundance of P-solubilizing and N-fixing bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109947. [PMID: 31744624 DOI: 10.1016/j.ecoenv.2019.109947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Fluopyram, as a reasonably good fungicide and nematicide, is widely used to control agricultural pests worldwide. However, its effects on soil microbial communities and plant growth remain controversial. Therefore, in this study, we investigated the effects of three concentrations (0.5, 1.5, and 5.0 mg/kg) of the fluopyram (Lufuda 41.7% a.i., suspension concentrate, SC) on the pepper rhizosphere microorganisms and pepper seedlings growth in a plant growth room. Moreover, we also investigated the dissipation of fluopyram in the soil, pepper roots, and leaves across a time interval of 45 days. The results showed that fluopyram application increased the number of pepper rhizosphere phosphate (P)-solubilizing bacteria, the abundance of nitrogen (N)-fixing nifH genes, and the pepper seedling growth. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis demonstrated that fluopyram did not alter rhizosphere bacterial community structure and diversity. However, fluopyram did increase the relative abundances of 138 bp and 400 bp T-RFs closely representing Bacillus and Rhizobium genera that were known as efficient plant growth promoting bacteria with P-solubilization and N-fixation properties. Corresponding to the increase of plant growth and beneficial microbes, the half-lives of fluopyram in soil and plant tissues also decreased that nevertheless suggested the role of plant-microbe interactions in the faster removal of fluopyram after application. Our results suggest that short-lived and easily degradable pesticides may have less toxicological effects on soil health while their judicious use may reshape plant-microbe interactions in favor of the plant growth.
Collapse
Affiliation(s)
- Tong Sun
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Mengyao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36101, USA
| | - Xinyu Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qingming Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
7
|
Etesami H, Adl SM. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-981-15-2576-6_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Odelade KA, Babalola OO. Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3873. [PMID: 31614851 PMCID: PMC6843647 DOI: 10.3390/ijerph16203873] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/19/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022]
Abstract
The persistent and undiscriminating application of chemicals as means to improve crop growth, development and yields for several years has become problematic to agricultural sustainability because of the adverse effects these chemicals have on the produce, consumers and beneficial microbes in the ecosystem. Therefore, for agricultural productivity to be sustained there are needs for better and suitable preferences which would be friendly to the ecosystem. The use of microbial metabolites has become an attractive and more feasible preference because they are versatile, degradable and ecofriendly, unlike chemicals. In order to achieve this aim, it is then imperative to explore microbes that are very close to the root of a plant, especially where they are more concentrated and have efficient activities called the rhizosphere. Extensive varieties of bacteria, archaea, fungi and other microbes are found inhabiting the rhizosphere with various interactions with the plant host. Therefore, this review explores various beneficial microbes such as bacteria, fungi and archaea and their roles in the environment in terms of acquisition of nutrients for plants for the purposes of plant growth and health. It also discusses the effect of root exudate on the rhizosphere microbiome and compares the three domains at molecular levels.
Collapse
Affiliation(s)
- Kehinde Abraham Odelade
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
10
|
de Souza RSC, Armanhi JSL, Damasceno NDB, Imperial J, Arruda P. Genome Sequences of a Plant Beneficial Synthetic Bacterial Community Reveal Genetic Features for Successful Plant Colonization. Front Microbiol 2019; 10:1779. [PMID: 31456759 PMCID: PMC6701196 DOI: 10.3389/fmicb.2019.01779] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/18/2019] [Indexed: 01/25/2023] Open
Abstract
Despite the availability of data on the functional and phylogenetic diversity of plant-associated microbiota, the molecular mechanisms governing the successful establishment of plant bacterial communities remain mostly elusive. To investigate bacterial traits associated with successful colonization of plants, we sequenced the genome of 26 bacteria of a synthetic microbial community (SynCom), 12 of which displayed robust and 14 displayed non-robust colonization lifestyles when inoculated in maize plants. We examined the colonization profile of individual bacteria in inoculated plants and inspected their genomes for traits correlated to the colonization lifestyle. Comparative genomic analysis between robust and non-robust bacteria revealed that commonly investigated plant growth-promoting features such as auxin production, nitrogen (N) fixation, phosphate acquisition, and ACC deaminase are not deterministic for robust colonization. Functions related to carbon (C) and N acquisition, including transporters of carbohydrates and amino acids, and kinases involved in signaling mechanisms associated with C and N uptake, were enriched in robust colonizers. While enrichment of carbohydrate transporters was linked to a wide range of metabolites, amino acid transporters were primarily related to the uptake of branched-chain amino acids. Our findings identify diversification of nutrient uptake phenotypes in bacteria as determinants for successful bacterial colonization of plants.
Collapse
Affiliation(s)
- Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
| | - Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
| | - Natália de Brito Damasceno
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
11
|
Unravelling the potential of microbes isolated from rhizospheric soil of chickpea ( Cicer arietinum) as plant growth promoter. 3 Biotech 2019; 9:277. [PMID: 31245241 DOI: 10.1007/s13205-019-1809-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/12/2019] [Indexed: 11/27/2022] Open
Abstract
In the present study, the Cicer arietinum (chickpea) rhizosphere bacterial strains Azotobacter chroococcum (AU-1), Bacillus subtilis (AU-2), Pseudomonas aeruginosa (AU-3) and Bacillus pumilis (AU-4) were isolated and characterized for plant growth-promoting traits with an aim of developing bio-fertilizing agent to improve growth and yield of chickpea plants under normal conditions. The ACC degrading potential of strains AU-1, AU-2, AU-3, and AU-4 was in the range of 600-1700 nmol α-ketobutyrate per mg of cellular protein per hour, respectively. These four rhizobacteria exhibited Indole acetic acid production approximately between 20 and 35.34 µg/ml. The phosphate solubilization potential was in the range of 78-87.64 mg Soluble P/L with maximum solubilization displayed by strains P. aeruginosa and B. pumilis. All the growth-promoting isolates displayed Fe-chelating siderophore and ammonia production while no isolate was able to produce hydrocyanic acid. Besides evaluating the presence of multifaceted in vitro plant growth-promoting traits, these four rhizobacterial isolates were halotolerant as well as water stress (drought) tolerant of up to - 1.2 Mpa of PEG 6000. The optimum pH and temperature for their growth were found to be pH 7 and 30 °C temperature. Under normal conditions, inoculation with formulated bacterial consortia significantly improved the (P ≤ 0.05) germination index, plant height, leaf area index, stem diameter, and chlorophyll content by ~ 50%, 100%, 63%, 185%, and 63%, respectively, as compared to uninoculated chickpea plants. The consortia of halotolerant and drought tolerant bacterial strains were shown to exert a positive impact on the growth of chickpea plants under normal conditions.
Collapse
|
12
|
Rani R, Kumar V. Endosulfan Degradation by Selected Strains of Plant Growth Promoting Rhizobacteria. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:138-145. [PMID: 28484804 DOI: 10.1007/s00128-017-2102-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Sixty endosulfan tolerant bacterial strains were isolated from pesticide stressed agricultural soils. Five most tolerant strains were tested for plant growth promoting (PGP) activities and endosulfan degradation under different optimizing conditions in broth and soil. The strains PRB101 and PRB77 were the most efficient in terms of endosulfan degradation and PGP activities and showed solubilization indexes of 3.3 and 3.1 mm, indole acetic acid production of 71 and 68 μg mL-1, siderophore zones of 13 mm each at the recommended dosage, respectively. Hydrogen cyanide and ammonia production remained unaffected in the presence of endosulfan. PRB101 and PRB77 strains were able to degrade 74% and 70% of endosulfan in broth and 67% and 63% in soil, respectively. Based on 16S rDNA analysis, the strains PRB101 and PRB77 exhibited 99% homology with Bacillus sp. KF984414 and Bacillus sp. LN849696, respectively.
Collapse
Affiliation(s)
- Rupa Rani
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India.
| |
Collapse
|
13
|
Endophytic Bacteria: Role in Phosphate Solubilization. ENDOPHYTES: CROP PRODUCTIVITY AND PROTECTION 2017. [DOI: 10.1007/978-3-319-66544-3_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Pseudomonas aeruginosa RRALC3 Enhances the Biomass, Nutrient and Carbon Contents of Pongamia pinnata Seedlings in Degraded Forest Soil. PLoS One 2015; 10:e0139881. [PMID: 26460867 PMCID: PMC4604145 DOI: 10.1371/journal.pone.0139881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 09/18/2015] [Indexed: 01/30/2023] Open
Abstract
The study was aimed at assessing the effects of indigenous Plant Growth Promoting Bacterium (PGPB) on the legume Pongamia pinnata in the degraded soil of the Nanmangalam Reserve Forest (NRF) under nursery conditions. In total, 160 diazotrophs were isolated from three different nitrogen-free semi-solid media (LGI, Nfb, and JMV). Amongst these isolates, Pseudomonas aeruginosa RRALC3 exhibited the maximum ammonia production and hence was selected for further studies. RRALC3 was found to possess multiple plant growth promoting traits such as nitrogen accumulation (120.6ppm); it yielded a positive amplicon with nifH specific primers, tested positive for Indole Acetic Acid (IAA; 18.3μg/ml) and siderophore production, tested negative for HCN production and was observed to promote solubilization of phosphate, silicate and zinc in the plate assay. The 16S rDNA sequence of RRALC3 exhibited 99% sequence similarity to Pseudomonas aeruginosa JCM5962. Absence of virulence genes and non-hemolytic activity indicated that RRALC3 is unlikely to be a human pathogen. When the effects of RRALC3 on promotion of plant growth was tested in Pongamia pinnata, it was observed that in Pongamia seedlings treated with a combination of RRALC3 and chemical fertilizer, the dry matter increased by 30.75%. Nitrogen, phosphorus and potassium uptake increased by 34.1%, 27.08%, and 31.84%, respectively, when compared to control. Significant enhancement of total sugar, amino acids and organic acids content, by 23.4%, 29.39%, and 26.53% respectively, was seen in the root exudates of P. pinnata. The carbon content appreciated by 4-fold, when fertilized seedlings were treated with RRALC3. From the logistic equation, the rapid C accumulation time of Pongamia was computed as 43 days longer than the control when a combination of native PGPB and inorganic fertilizer was applied. The rapid accumulation time of N, P and K in Pongamia when treated with the same combination as above was 15, 40 and 33 days longer, respectively, as compared to the control.
Collapse
|
15
|
Ahemad M. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 2015; 5:111-121. [PMID: 28324572 PMCID: PMC4362741 DOI: 10.1007/s13205-014-0206-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/24/2014] [Indexed: 11/27/2022] Open
Abstract
Heavy metal pollution of soils is of great concern. The presence of the toxic metal species above critical concentration not only harmfully affects human health but also the environment. Among existing strategies to remediate metal contaminates in soils, phytoremediation approach using metal accumulating plants is much convincing in terms of metal removal efficiency, but it has many limitations because of slow plant growth and decreased biomass owing to metal-induced stress. In addition, constrain of metal bioavailability in soils is the prime factor to restrict its applicability. Phytoremediation of metals in association with phosphate-solubilizing bacteria (PSB) considerably overcomes the practical drawbacks imposed by metal stress on plants. This review is an effort to describe mechanism of PSB in supporting and intensifying phytoremediation of heavy metals in soils and to address the developmental status of the current trend in application of PSB in this context.
Collapse
Affiliation(s)
- Munees Ahemad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| |
Collapse
|
16
|
He H, Qian TT, Liu WJ, Jiang H, Yu HQ. Biological and chemical phosphorus solubilization from pyrolytical biochar in aqueous solution. CHEMOSPHERE 2014; 113:175-181. [PMID: 25065807 DOI: 10.1016/j.chemosphere.2014.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Biochar, a massive byproduct of biomass pyrolysis during biofuel generation, is a potential P source for the mitigation of P depletion. However, the chemical and biological effect of the release of P from biochar is still unclear. In this study, two types of Lysinibacillus strains (Lysinibacillussphaericus D-8 and Lysinibacillus fusiformis A-5) were separated from a sediment and their P-solubilizing characteristics to biochar was first reported. Compared with the bacterial mixture W-1 obtained from a bioreactor, the introduction of A-5 and D-8 significantly improved P solubilization. The release of P from biochar by A-5 and D-8 reached 54% and 47%, respectively, which is comparable to that under rigorous chemical conditions. SEM images and XPS spectra demonstrated that the physicochemical properties of the biochar surface have changed in the process which may be caused by the activities of the microbes.
Collapse
Affiliation(s)
- Hui He
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ting-Ting Qian
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wu-Jun Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Han-Qing Yu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Prashar P, Kapoor N, Sachdeva S. Rhizosphere: its structure, bacterial diversity and significance. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2014; 13:63-77. [PMID: 0 DOI: 10.1007/s11157-013-9317-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
18
|
Singh AK, Cameotra SS. Rhamnolipids Production by Multi-metal-Resistant and Plant-Growth-Promoting Rhizobacteria. Appl Biochem Biotechnol 2013; 170:1038-56. [DOI: 10.1007/s12010-013-0244-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/15/2013] [Indexed: 11/24/2022]
|
19
|
Dwivedi S, Singh BR, Al-Khedhairy AA, Musarrat J. Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:938-944. [PMID: 21035259 DOI: 10.1016/j.jhazmat.2010.09.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 08/25/2010] [Accepted: 09/29/2010] [Indexed: 05/30/2023]
Abstract
Biodegradation of phenylurea herbicide isoproturon was studied in soil microcosm bioaugmented with a novel bacterial strain JS-11 isolated from wheat rhizosphere. The molecular characterization based on 16SrDNA sequence homology confirmed its identity as Pseudomonas aeruginosa strain JS-11. The herbicide was completely degraded within 20 days at ambient temperature with the rate constant of 0.08 day(-1), following the first-order rate kinetics. In stationary phase, at a cell density of 6.5 × 10(9) CFU mL(-1), the bacteria produced substantially increased amounts of indole acetic acid (IAA) in the presence of tryptophan as compared with the control. Also, the bacteria exhibited a time-dependent increase in the amount of tri-calcium phosphate solubilization in Pikovskaya's medium. Further screening of the strain JS-11 for auxiliary activities revealed its remarkable capability of producing the siderophores and hydrogen cyanide (HCN), besides antifungal activity against a common phytopathogen Fusarium oxysporum. Thus, the versatile P. aeruginosa strain JS-11 with innate potential for multifarious biological activities is envisaged as a super-bioinoculant for exploitation in the integrated bioremediation, plant growth and disease management (IBPDM) in contaminated agricultural soils.
Collapse
Affiliation(s)
- Sourabh Dwivedi
- Al-Jeraisy Chair for DNA Research, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
20
|
Toxicological Effects of Selective Herbicides on Plant Growth Promoting Activities of Phosphate Solubilizing Klebsiella sp. Strain PS19. Curr Microbiol 2010; 62:532-8. [DOI: 10.1007/s00284-010-9740-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/04/2010] [Indexed: 11/30/2022]
|