1
|
Veber B, do Amaral Flores M, Lehmann M, da Rosa CE, Hoff MLM. Mutagenicity of the agriculture pesticide chlorothalonil assessed by somatic mutation and recombination test in Drosophila melanogaster. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:275-288. [PMID: 39262276 DOI: 10.1002/em.22630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Chlorothalonil (CTL) is a pesticide widely used in Brazil, yet its mutagenic potential is not fully determined. Thus, we assessed the mutagenicity of CTL and its bioactivation metabolites using the somatic mutation and recombination test (SMART) in Drosophila melanogaster, by exposing individuals, with basal and high bioactivation capacities (standard and high bioactivation cross offspring, respectively), from third instar larval to early adult fly stages, to CTL-contaminated substrate (0.25, 1, 10 or 20 μM). This substrate served as food and as physical medium. Increased frequency of large single spots in standard cross flies' wings exposed to 0.25 μM indicates that, if CTL is genotoxic, it may affect Drosophila at early life stages. Since the total spot frequency did not change, CTL cannot be considered mutagenic in SMART. The same long-term exposure design was performed to test whether CTL induces oxidative imbalance in flies with basal (wild-type, WT) or high bioactivation (ORR strain) levels. CTL did not alter reactive oxygen species and antioxidant capacity against peroxyl radicals levels in adult flies. However, lipid peroxidation (LPO) levels were increased in WT male flies exposed to 1 μM CTL. SMART and LPO alterations were observed only in flies with basal bioactivation levels, pointing to direct CTL toxicity to DNA and lipids. Survival, emergence and locomotor behavior were not affected, indicating no bias due to lethality, developmental and behavioral impairment. We suggest that, if related to CTL exposure, DNA and lipid damages may be residual damage of earlier life stages of D. melanogaster.
Collapse
Affiliation(s)
- Bruno Veber
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG)-Campus Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Mariana do Amaral Flores
- Laboratório de Toxicidade Genética - TOXIGEN, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Mauricio Lehmann
- Laboratório de Toxicidade Genética - TOXIGEN, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG)-Campus Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Mariana Leivas Müller Hoff
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG)-Campus Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Tao H, Fang C, Xiao Y, Jin Y. The toxicity and health risk of chlorothalonil to non-target animals and humans: A systematic review. CHEMOSPHERE 2024; 358:142241. [PMID: 38705408 DOI: 10.1016/j.chemosphere.2024.142241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chlorothalonil (CTL), an organochloride fungicide applied for decades worldwide, has been found to be present in various matrixes and even accumulates in humans or other mammals through the food chain. Its high residue and diffusion in the environment have severely affected food security and public health. More and more research has considered CTL as a possible toxin to environmental non-target organisms, via influencing multiple systems such as metabolic, developmental, endocrine, genetic, and reproductive pathways. Aquatic organisms and amphibians are the most vulnerable species to CTL exposure, especially during the early period of development. Under experimental conditions, CTL can also have toxic effects on rodents and other non-target organisms. As for humans, CTL exposure is most often reported to be relevant to allergic reactions to the skin and eyes. We hope that this review will improve our understanding of the hazards and risks that CTL poses to non-target organisms and find a strategy for rational use.
Collapse
Affiliation(s)
- Huaping Tao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
3
|
Tao H, Wang J, Bao Z, Jin Y, Xiao Y. Acute chlorothalonil exposure had the potential to influence the intestinal barrier function and micro-environment in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165038. [PMID: 37355131 DOI: 10.1016/j.scitotenv.2023.165038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
The intestinal barrier maintains intestinal homeostasis and metabolism and protects against harmful pollutants. Some environmental pollutants seriously affect intestinal barrier function. However, it remains unclear whether or how chlorothalonil (CTL) impacts the intestinal barrier function in animals. Herein, 6-week-old male mice were acutely exposed to different CTL concentrations (100 and 300 mg/kg BW) via intragastric administration once a day for 7 days. Histopathological examination revealed obvious inflammation in the mice' colon and ileum. Most notably, CTL exposure increased the intestinal permeability, particularly in the CTL-300 group. CTL exposure reduced the secretion of colonic epithelial mucus and changed the transcription levels of genes bound up with ion transport and ileal antimicrobial peptide (AMP) secretion, indicating intestinal chemical barrier damage. The results of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and Ki67 staining revealed abnormal apoptosis and increased intestinal epithelial cell proliferation, suggesting that CTL exposure led to cytotoxicity and inflammation. The results of 16S rRNA sequencing revealed that CTL exposure altered the intestinal microbiota composition and reduced its diversity and richness in the colon contents. Thus, acute CTL exposure affected the different intestinal barrier- and gut microenvironment-related endpoints in mice.
Collapse
Affiliation(s)
- Huaping Tao
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Juntao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Hong C, Daughtrey M, Howle M, Schirmer S, Kosta K, Kong P, Likins M, Suslow K. Rapid Decline of Calonectria pseudonaviculata Soil Population in Selected Gardens Across the United States. PLANT DISEASE 2022; 106:2831-2838. [PMID: 35486597 DOI: 10.1094/pdis-02-22-0443-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Calonectria pseudonaviculata (Cps) poses a serious threat to boxwood, an iconic landscape plant in American and European gardens. Under the mild climatic conditions of the United Kingdom, Cps remained recoverable in infected leaf debris after being left on the soil surface or buried for 5 years. The primary objective of this study was to determine how this fungus may be affected by the warmer summers and colder winters in the United States by sampling and baiting soil with boxwood cuttings and by on-site testing with sentinel plants. Soil sampling started in a Virginia garden in January 2016 and was extended to California, Illinois, New York, and South Carolina in early summer of 2017 through late fall of 2018. The Cps soil population as measured by the percentage of infected bait leaves declined sharply within the first year of blighted boxwood removal and fell to an almost undetectable level at the end of this study. To validate these baiting results, the Virginia garden was tested on site four times with container-grown boxwood plants while the South Carolina garden and three New York gardens were tested once. Each test began with sentinel plants set out for field exposure, followed by evaluation on site and then in the laboratory after plants were retrieved from these gardens and incubated under conducive environments for 2 weeks. Cps was not observed on any sentinel boxwood plant on site or in the laboratory with one exception. These observations indicate that Cps did not survive in the United States garden soil over time as well as it did in the United Kingdom. These results have important practical implications while challenging the notion that fungi producing microsclerotia will always survive in the soil for many years.
Collapse
Affiliation(s)
- Chuanxue Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455
| | - Margery Daughtrey
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901
| | - Matthew Howle
- Department of Plant Industry, Clemson University, Florence, SC 29506
| | - Scott Schirmer
- Bureau of Environmental Programs, Illinois Department of Agriculture, DeKalb, IL 60115
| | - Kathleen Kosta
- California Department of Food and Agriculture, Sacramento, CA 95814
| | - Ping Kong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455
| | - Michael Likins
- Chesterfield Cooperative Extension, Chesterfield Co., VA 23832
| | - Karen Suslow
- National Ornamental Research Site at Dominican University of California, San Rafael, CA 94901
| |
Collapse
|
5
|
Wang J, Zhang Y, Zhang Z, Yu W, Li A, Gao X, Lv D, Zheng H, Kou X, Xue Z. Toxicology of respiratory system: Profiling chemicals in PM 10 for molecular targets and adverse outcomes. ENVIRONMENT INTERNATIONAL 2022; 159:107040. [PMID: 34922181 DOI: 10.1016/j.envint.2021.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/13/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that the increasing trend of respiratory diseases have been closely associated with the endogenous toxic chemicals (polycyclic aromatic hydrocarbons, heavy metal ions, etc.) in PM10. In the present study, we aim to determine the strong correlations between the chemicals in PM10 and the adverse consequences. We used the ChemView DB, the ToxRef DB and a comprehensive literature analysis to collect, identify, and evaluate the chemicals in PM10 and their adverse effects on respiratory system, and then used the ToxCast DB to analyze their bioactivity and key targets through 1192 molecular targets and cell characteristic endpoints. Meanwhile, the bioinformatics analysis were carried out on the molecular targets to screen out prevention and treatment targets. A total of 310 chemicals related to the respiratory system were identified. An unsupervised two-directional heatmap was constructed based on hierarchical clustering of 227 chemicals by their effect scores. A subset of 253 chemicals with respiratory system toxicity had in vitro bioactivity on 318 molecular targets that could be described, clustered and annotated in the heatmap and bipartite network, which were analyzed based on the protein information in UniProt KB database and the software of GO, STRING, and KEGG. These results showed that the chemicals in PM10 have strong correlation with different types of respiratory system injury. The main pathways of respiratory system injury caused by PM10 are the Calcium signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway, and the core proteins in which are likely to be the molecular targets for the prevention and treatment of damage caused by PM10.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Danyu Lv
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Huaize Zheng
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
6
|
Yang G, Wang Y, Li J, Wang D, Bao Z, Wang Q, Jin Y. Health risks of chlorothalonil, carbendazim, prochloraz, their binary and ternary mixtures on embryonic and larval zebrafish based on metabolomics analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124240. [PMID: 33075626 DOI: 10.1016/j.jhazmat.2020.124240] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Chlorothalonil (CTL), carbendazim (CBZ), and prochloraz (PCZ) are fungicides widely used in many countries. The use of these fungicides raises concerns because they are often applied together or used in the same agricultural area. However, the toxicity of these fungicides or mixtures, especially to aquatic organisms, has received limited attention. Here, embryonic and larval zebrafish were exposed to indicated concentrations of CTL, CBZ, and PCZ and their binary (CTL+CBZ, CTL+PCZ and CBZ+PCZ) and ternary (CTL+CBZ+PCZ) mixtures for 24 h. Based on metabolomics analysis, we observed that hundreds of metabolites were altered, and glycolysis metabolism and amino acid metabolism were the two most affected pathways. Interestingly, a total of 9 and 26 metabolites changed significantly in embryos and larvae treated with all fungicides, respectively. Among these altered metabolites, 2-aminoadipic acid (2-AAA) levels increased significantly in all groups, indicating that 2-AAA potentially represents a useful biomarker for evaluating the toxicity of fungicides. Furthermore, the joint effects of CTL+PCZ on embryos and larvae, especially on amino acid metabolism, were weaker than those in other groups, but combined treatment did not influence individual fungicidal activity. Data acquired from metabolomics provided important insight for understanding the mechanism by which fungicides or their mixtures affect zebrafish.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jian Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
7
|
Smits JEG, Sanders G, Charlebois M. Response of a Small Mammal Population Postremediation for an In Situ Oil Pipeline Blowout on the Athabasca Oil Sands. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1542-1548. [PMID: 30859624 DOI: 10.1002/etc.4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Two releases from steam assisted gravity drainage (SAGD) wellheads occurred 3 yr apart. To track recovery of the affected areas, red-backed voles were studied 1 and 4 yr later, using population estimates, hepatic detoxification effort, body condition, and tissue metal levels as bioindicators of site recovery. From years 1 to 4, higher ethoxyresorufin-O-deethylase induction was no longer evident, capture rate was lower, and body lead residues were no longer (inversely) correlated with body condition. Environ Toxicol Chem 2019;38:1542-1548. © 2019 SETAC.
Collapse
Affiliation(s)
- Judit E G Smits
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Greg Sanders
- Omnia Ecological Services, Calgary, Alberta, Canada
| | | |
Collapse
|
8
|
Berger RG, Aslund MW, Sanders G, Charlebois M, Knopper LD, Bresee KE. A multiple lines of evidence approach for the ecological risk assessment of an accidental bitumen release from a steam assisted gravity drainage (SAGD) well in the Athabasca oil sands region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:495-504. [PMID: 26520273 DOI: 10.1016/j.scitotenv.2015.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
To assess the ecological impacts of two independent accidental bitumen releases from two steam assisted gravity drainage (SAGD) wells in the Athabasca oil sands region, a multiple lines of evidence (LOE) approach was developed. Following the release in 2010, action was taken to minimize environmental impact, including the selective removal of the most highly impacted vegetation and the use of oil socks to minimize possible runoff. An ecological risk assessment (ERA) was then conducted based on reported concentrations of bitumen related contaminants in soil, vegetation, and water. Results of biological assessments conducted at the site were also included in the risk characterization. Overall, the conclusion of the ERA was that the likelihood of long-term adverse health effects to ecological receptors in the area was negligible. To provide evidence for this conclusion, a small mammal sampling plan targeting Southern red-back voles (Myodes gapperi) was carried out at two sites and two relevant reference areas. Voles were readily collected at all locations and no statistically significant differences in morphometric measurements (i.e., body mass, length, foot length, and adjusted liver weight) were found between animals collected from impact zones of varying levels of coverage. Additionally, no trends corresponding with bitumen coverage were observed with respect to metal body burden in voles for metals that were previously identified in the source bitumen. Hepatic ethoxyresorufin-O-deethylase (EROD) activity was statistically significantly elevated in voles collected from the high impact zones of sites compared to those collected from the reference areas, a finding that is indicative of continued exposure to contaminants. However, this increase in EROD was not correlated with any observable adverse population-wide biological outcomes. Therefore the biological sampling program supported the conclusion of the initial ERA and supported the hypothesis of no significant long-term population-wide ecological impact of the accidental bitumen releases.
Collapse
Affiliation(s)
- Robert G Berger
- Intrinsik Health Sciences Inc., 6605 Hurontario Street, Suite 500, Mississauga, Ontario L5T 0A3, Canada
| | - Melissa Whitfield Aslund
- Intrinsik Environmental Sciences Inc., 6605 Hurontario Street, Suite 500, Mississauga, Ontario L5T 0A3, Canada
| | - Greg Sanders
- Omnia Ecological Services, 722 27th Avenue NW, Calgary, Alberta T2M 2J3, Canada
| | - Michael Charlebois
- Omnia Ecological Services, 722 27th Avenue NW, Calgary, Alberta T2M 2J3, Canada
| | - Loren D Knopper
- Stantec Consulting Ltd., 200-835 Paramount Drive Stoney Creek, Ontario L8J 0B4, Canada
| | - Karl E Bresee
- Intrinsik Environmental Sciences Inc., 736 - 8th Avenue SW, Suite 1060, Calgary, Alberta T2P 1H4, Canada.
| |
Collapse
|
9
|
Yang X, Zhang G, Wang F, Wang Y, Hu X, Li Q, Jia G, Liu Z, Wang Y, Deng R, Zeng X. Development of a colloidal gold-based strip test for the detection of chlorothalonil residues in cucumber. FOOD AGR IMMUNOL 2015. [DOI: 10.1080/09540105.2015.1018875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Fernández-García JC, Arrebola JP, González-Romero S, Soriguer F, Olea N, Tinahones FJ. Diabetic ketoacidosis following chlorothalonil poisoning: Table 1. Occup Environ Med 2014; 71:382. [DOI: 10.1136/oemed-2013-101795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Tan YQ, Xiong HX, Shi TZ, Hua RM, Wu XW, Cao HQ, Li XD, Tang J. Photosensitizing effects of nanometer TiO2 on chlorothalonil photodegradation in aqueous solution and on the surface of pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5003-5008. [PMID: 23646907 DOI: 10.1021/jf4006005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present study examined the effects of anatase nanometer TiO2 on photochemical degradation of chlorothalonil in aqueous solution and on the plant surface. Results showed that nanometer TiO2 exhibited a strong photosensitizing effect on the degradation of chlorothalonil both in aqueous solution and on the surface of green pepper. The photosensitization rate was the highest in the sunlight compared to illumination under high-pressure mercury and UV lamps. Use of distinct hydroxyl radical scavengers indicated that nanometer TiO2 acted by producing hydroxyl radicals with strong oxidizing capacity. Notably, nanometer TiO2 facilitated complete photodegradation of chlorothalonil with no detectable accumulation of the intermediate chlorothalonil-4-hydroxy. Nanometer TiO2 was also active on the surface of green pepper under natural sunlight both inside and outside of plastic greenhouse. These results together suggest that nanometer TiO2 can be used as a photosensitizer to accelerate degradation of the pesticides under greenhouse conditions.
Collapse
Affiliation(s)
- Yong Qiang Tan
- Provincial Key Laboratory for Agri-Food Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | | | | | | | | | | | | | | |
Collapse
|