1
|
Dou D, He M, Liu J, Xiao S, Gao F, An W, Qi L. Occurrence, distribution characteristics and exposure assessment of perchlorate in the environment in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134805. [PMID: 38843632 DOI: 10.1016/j.jhazmat.2024.134805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024]
Abstract
Recognizing the extent of perchlorate pollution in the environment is critical to preventing and mitigating potential perchlorate harm to human health. The presence and distribution of perchlorate in Chinese environmental matrixes (water, atmosphere, and soil) were systematically investigated and comprehensively analyzed, and cumulative perchlorate exposure at the regional level was assessed using a combined aggregate exposure pathway method. The results showed that perchlorate is ubiquitous in the environment of China with significant regional differences. The total perchlorate exposure levels in each region of China ranked as South China > Southwest China > East China > North China > Northeast China > Northwest China. Although the average exposure dose of 0.588 (95 %CI: 0.142 -1.914) μg/kg bw/day being lower than the reference dose of 0.70 μg/kg bw/day, it was observed that the intake of perchlorate in some regions exceed this reference dose. Oral ingestion was the primary route of perchlorate exposure (89.97-96.57 % of the total intake), followed by dermal contact (3.21-9.16 %) and respiratory inhalation. Food and drinking water were the main sources of total perchlorate intake, contributing 52.54 % and 31.12 % respectively, with the latter contributing significantly more in southern China than in northern China. In addition, perchlorate exposure from dust sources was also noteworthy, as its contribution was as high as 23.18 % in some regions. These findings will improve understanding of the perchlorate risk and serve as a critical reference for policymakers in crafting improved environmental management and risk mitigation strategies in China and other nations.
Collapse
Affiliation(s)
- Diancheng Dou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Ming He
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Jinxin Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Shumin Xiao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China.
| | - Fu Gao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Wei An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Li Qi
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| |
Collapse
|
2
|
Cadena S, Cerqueda-García D, Uribe-Flores MM, Ramírez SI. Metagenomic profiling of halites from the Atacama Desert: an extreme environment with natural perchlorate does not promote high diversity of perchlorate reducing microorganisms. Extremophiles 2024; 28:25. [PMID: 38664270 DOI: 10.1007/s00792-024-01342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/12/2024] [Indexed: 07/17/2024]
Abstract
We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.
Collapse
Affiliation(s)
- Santiago Cadena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico
| | - Daniel Cerqueda-García
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic®, Instituto de Ecología, A.C., Carretera Antigua a Coatepec #351, Col. El Haya, C. P. 91073, Xalapa, Veracruz, Mexico
| | - María Magdalena Uribe-Flores
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico
| | - Sandra I Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
3
|
Wilanowska PA, Rzymski P, Kaczmarek Ł. Long-Term Survivability of Tardigrade Paramacrobiotus experimentalis (Eutardigrada) at Increased Magnesium Perchlorate Levels: Implications for Astrobiological Research. Life (Basel) 2024; 14:335. [PMID: 38541660 PMCID: PMC10971682 DOI: 10.3390/life14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 05/26/2024] Open
Abstract
Perchlorate salts, including magnesium perchlorate, are highly toxic compounds that occur on Mars at levels far surpassing those on Earth and pose a significant challenge to the survival of life on this planet. Tardigrades are commonly known for their extraordinary resistance to extreme environmental conditions and are considered model organisms for space and astrobiological research. However, their long-term tolerance to perchlorate salts has not been the subject of any previous studies. Therefore, the present study aimed to assess whether the tardigrade species Paramacrobiotus experimentalis can survive and grow in an environment contaminated with high levels of magnesium perchlorates (0.25-1.0%, 1.5-6.0 mM ClO4- ions). The survival rate of tardigrades decreased with an increase in the concentration of the perchlorate solutions and varied from 83.3% (0.10% concentration) to 20.8% (0.25% concentration) over the course of 56 days of exposure. Tardigrades exposed to 0.15-0.25% magnesium perchlorate revealed significantly decreased body length. Our study indicates that tardigrades can survive and grow in relatively high concentrations of magnesium perchlorates, largely exceeding perchlorate levels observed naturally on Earth, indicating their potential use in Martian experiments.
Collapse
Affiliation(s)
- Paulina Anna Wilanowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
| |
Collapse
|
4
|
Li D, Huang W, Huang R. Analysis of environmental pollutants using ion chromatography coupled with mass spectrometry: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131952. [PMID: 37399723 DOI: 10.1016/j.jhazmat.2023.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
The rise of emerging pollutants in the current environment and requirements of trace analysis in complex substrates pose challenges to modern analytical techniques. Ion chromatography coupled with mass spectrometry (IC-MS) is the preferred tool for analyzing emerging pollutants due to its excellent separation ability for polar and ionic compounds with small molecular weight and high detection sensitivity and selectivity. This paper reviews the progress of sample preparation and ion-exchange IC-MS methods in the analysis of several major categories of environmental polar and ionic pollutants including perchlorate, inorganic and organic phosphorus compounds, metalloids and heavy metals, polar pesticides, and disinfection by-products in past two decades. The comparison of various methods to reduce the influence of matrix effect and improve the accuracy and sensitivity of analysis are emphasized throughout the process from sample preparation to instrumental analysis. Furthermore, the human health risks of these pollutants in the environment with natural concentration levels in different environmental medias are also briefly discussed to raise public attention. Finally, the future challenges of IC-MS for analysis of environmental pollutants are briefly discussed.
Collapse
Affiliation(s)
- Dazhen Li
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Reznicek J, Bednarik V, Filip J. PERCHLORATE SENSING – CAN ELECTROCHEMISTRY MEET THE SENSITIVITY OF STANDARD METHODS? Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Acevedo-Barrios R, Rubiano-Labrador C, Navarro-Narvaez D, Escobar-Galarza J, González D, Mira S, Moreno D, Contreras A, Miranda-Castro W. Perchlorate-reducing bacteria from Antarctic marine sediments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:654. [PMID: 35934758 DOI: 10.1007/s10661-022-10328-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate is a contaminant that can persist in groundwater and soil, and is frequently detected in different ecosystems at concentrations relevant to human health. This study isolated and characterised halotolerant bacteria that can potentially perform perchlorate reduction. Bacterial microorganisms were isolated from marine sediments on Deception, Horseshoe and Half Moon Islands of Antarctica. The results of the 16S ribosomal RNA (rRNA) gene sequence analysis indicated that the isolates were phylogenetically related to Psychrobacter cryohalolentis, Psychrobacter urativorans, Idiomarina loihiensis, Psychrobacter nivimaris, Sporosarcina aquimarina and Pseudomonas lactis. The isolates grew at a sodium chloride concentration of up to 30% and a perchlorate concentration of up to 10,000 mg/L, which showed their ability to survive in saline conditions and high perchlorate concentrations. Between 21.6 and 40% of perchlorate was degraded by the isolated bacteria. P. cryohalolentis and P. urativorans degraded 30.3% and 32.6% of perchlorate, respectively. I. loihiensis degraded 40% of perchlorate, and P. nivimaris, S. aquimarina and P. lactis degraded 22%, 21.8% and 21.6% of perchlorate, respectively. I. loihiensis had the highest reduction in perchlorate, whereas P. lactis had the lowest reduction. This study is significant as it is the first finding of P. cryohalolentis and. P. lactis on the Antarctic continent. In conclusion, these bacteria isolated from marine sediments on Antarctica offer promising resources for the bioremediation of perchlorate contamination due to their ability to degrade perchlorate, showing their potential use as a biological system to reduce perchlorate in high-salinity ecosystems.
Collapse
Affiliation(s)
- Rosa Acevedo-Barrios
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia.
| | - Carolina Rubiano-Labrador
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Dhania Navarro-Narvaez
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Johana Escobar-Galarza
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Diana González
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Stephanie Mira
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Dayana Moreno
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Aura Contreras
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| | - Wendy Miranda-Castro
- Grupo de Estudios Químicos Y Biológicos, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| |
Collapse
|
7
|
Rzymski P, Poniedziałek B, Hippmann N, Kaczmarek Ł. Screening the Survival of Cyanobacteria Under Perchlorate Stress. Potential Implications for Mars In Situ Resource Utilization. ASTROBIOLOGY 2022; 22:672-684. [PMID: 35196144 PMCID: PMC9233533 DOI: 10.1089/ast.2021.0100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are good candidates for various martian applications as a potential source of food, fertilizer, oxygen, and biofuels. However, the increased levels of highly toxic perchlorates may be a significant obstacle to their growth on Mars. Therefore, in the present study, 17 cyanobacteria strains that belong to Chroococcales, Chroococcidiopsidales, Nostocales, Oscillatoriales, Pleurocapsales, and Synechococcales were exposed to 0.25-1.0% magnesium perchlorate concentrations (1.5-6.0 mM ClO4- ions) for 14 days. The exposure to perchlorate induced at least partial inhibition of growth in all tested strains, although five of them were able to grow at the highest perchlorate concentration: Chroococcidiopsis thermalis, Leptolyngbya foveolarum, Arthronema africanum, Geitlerinema cf. acuminatum, and Cephalothrix komarekiana. Chroococcidiopsis sp. Chroococcidiopsis cubana demonstrated growth up to 0.5%. Strains that maintained growth displayed significantly increased malondialdehyde content, indicating perchlorate-induced oxidative stress, whereas the chlorophyll a/carotenoids ratio tended to be decreased. The results show that selected cyanobacteria from different orders can tolerate perchlorate concentrations typical for the martian regolith, indicating that they may be useful in Mars exploration. Further studies are required to elucidate the biochemical and molecular basis for the perchlorate tolerance in selected cyanobacteria.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Natalia Hippmann
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
8
|
Calderón R, Jara C, Albornoz F, Palma P, Arancibia-Miranda N, Karthikraj R, Zhu H. Accumulation and distribution of perchlorate in spinach and chard growing under greenhouse: Implications for food safety in baby foods commodities. Food Chem 2022; 370:131101. [PMID: 34537427 DOI: 10.1016/j.foodchem.2021.131101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/04/2022]
Abstract
Very little information is available with regards to the bioavailability of perchlorate in spinach or chard used in the production of baby foods commodities. In the present study, the uptake and accumulation of perchlorate were compared under two different treatments (T1: 1 and T2: 10 mg L-1 ClO4-). Our results indicate that spinach has a higher capacity to accumulate perchlorate than chard (p < 0.0185). Concentrations of perchlorate in leaves, stems and roots (leaves > stem > roots) all gradually increased (p < 0.0001) as vegetable growing and treatment (T2 > T1). No significant differences were found between the control and T1. The daily intake for perchlorate (control) is below the proposed international standard, however, it was exceeded in T1 and T2. The results suggested that perchlorate is actively accumulate in high concentrations in vegetables used in the production of baby food commodities and the exposure of perchlorate via the food consumption (baby foods) was evaluated as not safe.
Collapse
Affiliation(s)
- R Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| | - C Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago de Chile, Chile
| | - F Albornoz
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - P Palma
- Laboratorio de Salud Pública, Ambiental y Laboral, Servicio Regional Ministerial, Ministerio de Salud, Región Metropolitana, Santiago, Chile
| | - N Arancibia-Miranda
- Facultad de Química and Biología, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago 9170022, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - R Karthikraj
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - H Zhu
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
9
|
Calderón R, Palma P, Arancibia-Miranda N, Kim UJ, Silva-Moreno E, Kannan K. Occurrence, distribution and dynamics of perchlorate in soil, water, fertilizers, vegetables and fruits and associated human exposure in Chile. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:527-535. [PMID: 32740759 DOI: 10.1007/s10653-020-00680-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Perchlorate (ClO4-) has been identified as a persistent environmental contaminant of concern. Perchlorate exposure is a potential health concern because it interferes with hormone production by thyroid gland. Food (fruits and vegetables) and drinking water are an important source of human exposure to perchlorate. However, little is known about the occurrence of perchlorate in Chile. The purpose of this study was to determine the occurrence of perchlorate in 145 samples (soil, drinking water, surface water, groundwater, fertilizers, fruits and vegetables) collected across Chile and estimate associated exposure to consumers. Our results show that perchlorate was detected in soil (median: 22.2 ng g-1), drinking water (median: 3.0 ng mL-1), fruits (median: 0.91 ng g-1 fresh weight [FW]), lettuce (median: 5.0 ng g-1 FW) and chard (median: 4.15 ng g-1 FW). Interestingly, perchlorate concentrations detected in drinking water from three regions (Serena, Copiapo and Illapel) exceeded the USEPA interim drinking water health advisory level of 15 ng mL-1. Median concentrations of perchlorate in non-nitrogenous fertilizers (3.1 mg kg-1) were higher than those in nitrogenous fertilizers (1.3 mg kg-1). Estimated daily intake (EDI) of perchlorate via drinking water was lower than the USEPA's reference dose (7000 ng kg-1 bw day-1). The EDI of perchlorate via vegetables (chard and lettuce) produced in northern Chile was three times higher than those produced in other regions. The results of this study provide information about perchlorate sources in Chile, which will be helpful in modifying current regulations.
Collapse
Affiliation(s)
- R Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Chile.
| | - P Palma
- Laboratorio de Salud Pública, Ambiental y Laboral, Servicio Regional Ministerial, Ministerio de Salud, Región Metropolitana, Santiago, Chile
| | - N Arancibia-Miranda
- Facultad de Química and Biología, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago, 9170022, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago, 9170124, Chile
| | - Un-Jung Kim
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, 10016, USA
- Department of Earth and Environmental Sciences, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - E Silva-Moreno
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Chile
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Providencia, Chile
| | - K Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, 10016, USA
| |
Collapse
|
10
|
Chen Y, Zhu Z, Zhao Y, Wu X, Xiao Q, Deng Y, Li M, Li C, Qiu H, Lu S. Perchlorate in shellfish from South China Sea and implications for human exposure. MARINE POLLUTION BULLETIN 2021; 170:112672. [PMID: 34218037 DOI: 10.1016/j.marpolbul.2021.112672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Shellfish can absorb and accumulate contaminants. The consumption of shellfish could expose humans to pollutants and increase related health risk. Perchlorate (ClO4-) is a ubiquitous pollutant and could affect thyroid functions, especially for children and pregnant women. However, knowledge on the contamination of perchlorate in aquatic food such as shellfish remains limited. This study aimed to investigate the abundances of perchlorate in shellfish from South China Sea and to assess human exposure risks. A total of 178 shellfish samples from eight species were collected from offshore aquaculture waters in South China Sea. Perchlorate was detected in 99.4% of them, suggesting widespread pollution in coastal waters. Concentrations of perchlorate ranged from not detected (N.D.) to 71.5 μg kg-1, with a median value of 4.33 μg kg-1. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human exposure dose and health risks, respectively. The HQ values were determined to be less than 1, indicating no significant health risks to local residents via shellfish consumption. To our knowledge, this is the first study to investigate perchlorate contamination in South China shellfish and assess potential human risks.
Collapse
Affiliation(s)
- Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yilan Deng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Minhui Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Hongmei Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
11
|
Calderon R, Rajendiran K, U J K, Palma P, Arancibia-Miranda N, Silva-Moreno E, Corradini F. Sources and fates of perchlorate in soils in Chile: A case study of perchlorate dynamics in soil-crop systems using lettuce (Lactuca sativa) fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114682. [PMID: 32380400 DOI: 10.1016/j.envpol.2020.114682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Perchlorate occurs naturally in the environment in deposits of nitrate and can be formed in the atmosphere and precipitate into soil. However, little is known about the occurrence and levels of perchlorate in soils and fertilizers in Chile and its impacts on agricultural systems and food safety. In this study, concentrations of perchlorate were determined in 101 surface soils and 17 fertilizers [nitrogenous (n = 8), nitrogen-phosphorous-potassium (NPK; n = 3), phosphate (n = 2) and non-nitrogenous (n = 4)] collected across Chile from 2017 to 2018. Our results show that perchlorate was detected mainly in agricultural soils (mean: 0.32 ng g-1), grassland rotation sites (0.41 ngg-1) and urban locations (0.38 ng g-1). Interestingly, elevated concentrations of perchlorate (9.66 and 54.0 ng g-1) were found in agricultural soils. All fertilizers contained perchlorate: nitrogenous fertilizers (mean: 32.6 mg kg-1), NPK (mean: 12.6 mg kg-1), non-nitrogenous fertilizers (mean: 10.2 mg kg-1) and phosphates (mean: 11.5 mg kg-1). Only one type of nitrogenous fertilizer (KNO3: 95.3 mg kg-1) exceeded the international regulation limit (50 mg kg-1). For two agronomic practices, the content of perchlorate in lettuce increased as the fertilizer application rate increased, with fertigation promoting a more significant accumulation. However, the concentrations generally remained below regulatory values. Our results suggest that fertilizers constitute an important source of perchlorate in soils.
Collapse
Affiliation(s)
- R Calderon
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica, 1990, Segundo Piso, Santiago, Chile; Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Santiago, Chile.
| | - Karthikraj Rajendiran
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY, 12201-0509, United States
| | - Kim U J
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY, 12201-0509, United States; Department of Earth & Environmental Sciences, University of Texas at Arlington, 500 Yates Street, Arlington, TX, 76019, United States
| | - P Palma
- Laboratorio de Salud Pública, Ambiental y Laboral, Servicio Regional Ministerial, Ministerio de Salud, Región Metropolitana, Santiago, Chile
| | - N Arancibia-Miranda
- Facultad de Química and Biología, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago, 9170022, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago, 9170124, Chile
| | - E Silva-Moreno
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Chile; Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Santiago, Chile
| | - F Corradini
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands; Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Santiago, Chile
| |
Collapse
|
12
|
Lisco G, De Tullio A, Giagulli VA, De Pergola G, Triggiani V. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients 2020; 12:E1669. [PMID: 32512711 PMCID: PMC7352877 DOI: 10.3390/nu12061669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perchlorate-induced natrium-iodide symporter (NIS) interference is a well-recognized thyroid disrupting mechanism. It is unclear, however, whether a chronic low-dose exposure to perchlorate delivered by food and drinks may cause thyroid dysfunction in the long term. Thus, the aim of this review was to overview and summarize literature results in order to clarify this issue. METHODS Authors searched PubMed/MEDLINE, Scopus, Web of Science, institutional websites and Google until April 2020 for relevant information about the fundamental mechanism of the thyroid NIS interference induced by orally consumed perchlorate compounds and its clinical consequences. RESULTS Food and drinking water should be considered relevant sources of perchlorate. Despite some controversies, cross-sectional studies demonstrated that perchlorate exposure affects thyroid hormone synthesis in infants, adolescents and adults, particularly in the case of underlying thyroid diseases and iodine insufficiency. An exaggerated exposure to perchlorate during pregnancy leads to a worse neurocognitive and behavioral development outcome in infants, regardless of maternal thyroid hormone levels. DISCUSSION AND CONCLUSION The effects of a chronic low-dose perchlorate exposure on thyroid homeostasis remain still unclear, leading to concerns especially for highly sensitive patients. Specific studies are needed to clarify this issue, aiming to better define strategies of detection and prevention.
Collapse
Affiliation(s)
- Giuseppe Lisco
- ASL Brindisi, Unit of Endocrinology, Metabolism & Clinical Nutrition, Hospital “A. Perrino”, Strada per Mesagne 7, 72100 Brindisi, Puglia, Italy;
| | - Anna De Tullio
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
- Clinic of Endocrinology and Metabolic Disease, Conversano Hospital, Via Edmondo de Amicis 36, 70014 Conversano, Bari, Puglia, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy;
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| |
Collapse
|
13
|
Calderón R, Palma P, Eltit K, Arancibia-Miranda N, Silva-Moreno E, Yu W. Field study on the uptake, accumulation and risk assessment of perchlorate in a soil-chard/spinach system: Impact of agronomic practices and fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137411. [PMID: 32145491 DOI: 10.1016/j.scitotenv.2020.137411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The application of excessive fertilizer represents a primary source of entry for perchlorate into crop systems and thus has raised widespread concern regarding food safety. Several studies have reported the occurrence of perchlorate in vegetables. However, limited information is available on the fate of perchlorate in the soil-plant system. In this study, we performed field experiments to evaluate the effects of the application rate of Chilean nitrate fertilizer and the type of fertilization (manual or fertigation) on the uptake of perchlorate by plants grown in open fields. Interestingly, in the control, chard and spinach accumulated 21.3 and 25.9 μg kg-1, respectively. For both agronomic practices, the content of perchlorate in chard and spinach increased as the fertilizer application rate increased, with fertigation promoting more significant accumulations. Spinach accumulated almost two times more perchlorate than chard for all treatments; however, the concentrations generally remained below regulatory values. The intake of spinach and chard presented a low risk to human health for all age groups. These findings enhance our understanding of the environmental impact of the use of fertilizers in agriculture and food safety.
Collapse
Affiliation(s)
- R Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| | - P Palma
- Laboratorio de Salud Pública, Ambiental y Laboral, Servicio Regional Ministerial, Ministerio de Salud, Región Metropolitana, Santiago, Chile
| | - K Eltit
- Facultad de Ingeniería, Departamento de Ingeniería Geográfica, Universidad de Santiago de Chile, Av. Libertador B. O'Higgins 3363, Santiago, Chile
| | - N Arancibia-Miranda
- Facultad de Química and Biología, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago 9170022, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - E Silva-Moreno
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Chile
| | - W Yu
- Facultad de Química and Biología, Universidad de Santiago de Chile, USACH, Casilla 40, C.P. 33, Santiago 9170022, Chile; Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York 12201-0509, United States
| |
Collapse
|
14
|
Functional Traits Co-Occurring with Mobile Genetic Elements in the Microbiome of the Atacama Desert. DIVERSITY 2019. [DOI: 10.3390/d11110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mobile genetic elements (MGEs) play an essential role in bacterial adaptation and evolution. These elements are enriched within bacterial communities from extreme environments. However, very little is known if specific genes co-occur with MGEs in extreme environments and, if so, what their function is. We used shotgun-sequencing to analyse the metagenomes of 12 soil samples and characterized the composition of MGEs and the genes co-occurring with them. The samples ranged from less arid coastal sites to the inland hyperarid core of the Atacama Desert, as well as from sediments below boulders, protected from UV-irradiation. MGEs were enriched at the hyperarid sites compared with sediments from below boulders and less arid sites. MGEs were mostly co-occurring with genes belonging to the Cluster Orthologous Group (COG) categories “replication, recombination and repair,” “transcription” and “signal transduction mechanisms.” In general, genes coding for transcriptional regulators and histidine kinases were the most abundant genes proximal to MGEs. Genes involved in energy production were significantly enriched close to MGEs at the hyperarid sites. For example, dehydrogenases, reductases, hydrolases and chlorite dismutase and other enzymes linked to nitrogen metabolism such as nitrite- and nitro-reductase. Stress response genes, including genes involved in antimicrobial and heavy metal resistance genes, were rarely found near MGEs. The present study suggests that MGEs could play an essential role in the adaptation of the soil microbiome in hyperarid desert soils by the modulation of housekeeping genes such as those involved in energy production.
Collapse
|
15
|
Raúl C, Kim UJ, Kannan K. Occurrence and human exposure to bromate via drinking water, fruits and vegetables in Chile. CHEMOSPHERE 2019; 228:444-450. [PMID: 31051346 DOI: 10.1016/j.chemosphere.2019.04.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Bromate (BrO3-) is an anionic contaminant known possess carcinogenic potential. Although some studies have reported the occurrence of bromate in drinking water, very little is known about its presence in fruits and vegetables, especially in Chile. In this study, we quantified bromate in soils (n = 29), drinking water (n = 43), surface water (n = 6), groundwater (n = 6), fertilizers (n = 7), fruits (n = 12) and vegetables (n = 42) collected across Chile. The highest average concentrations of bromate in soils (11.7 ng g-1) and drinking water (8.8 ng mL-1) were found in northern Chile. Additionally, drinking water collected from four regions of Chile showed higher concentrations of bromate (median:18.5 ng mL-1) than the maximum contaminant level (MCL, 10 ng mL-1). Concentrations of bromate in nitrogenous and non-nitrogenous fertilizers were similar (median: 2.51 μg g-1). Leafy vegetables (median: 9.52 ng g-1) produced in the northern Chile contained higher bromate concentrations than those produced in other regions (median: 0.24 ng g-1). The estimated daily intakes of bromate via drinking water in northern, central and southern were ranged between 58.6 and 447 ng/kg bw/d. Leafy vegetables were an important source of bromate for all age group. The EDI values were below the respective reference dose (RfD) of 4000 ng/kg-day.
Collapse
Affiliation(s)
- Calderon Raúl
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, Santiago, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| | - Un-Jung Kim
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201-0509, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201-0509, United States
| |
Collapse
|
16
|
Cao F, Jaunat J, Sturchio N, Cancès B, Morvan X, Devos A, Barbin V, Ollivier P. Worldwide occurrence and origin of perchlorate ion in waters: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:737-749. [PMID: 30684841 DOI: 10.1016/j.scitotenv.2019.01.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Perchlorate (ClO4-) is a persistent water soluble oxyanion of growing environmental interest. Perchlorate contamination can be a health concern due to its ability to disrupt the use of iodine by the thyroid gland and the production of metabolic hormones. Its widespread presence in surface water and groundwater makes the aquatic environment a potential source of perchlorate exposure. However, the amount of published data on perchlorate origins and water contamination worldwide remains spatially limited. Here, we present an overview of research on perchlorate origins and occurrences in water, and the methodology to distinguish the different perchlorate sources based on isotope analysis. All published ranges of isotopic content in perchlorate from different sources are presented, including naturally occurring and man-made perchlorate source types, as well as the effects of isotope fractionation that accompanies biodegradation processes. An example of a case study in France is presented to emphasize the need for further research on this topic.
Collapse
Affiliation(s)
- Feifei Cao
- Université de Reims Champagne-Ardenne - GEGENAA - EA 3795, 2 esplanade Roland Garros, 51100 Reims, France.
| | - Jessy Jaunat
- Université de Reims Champagne-Ardenne - GEGENAA - EA 3795, 2 esplanade Roland Garros, 51100 Reims, France
| | - Neil Sturchio
- Department of Geological Sciences, University of Delaware, 255 Academy Street/103 Penny Hall, Newark, DE 19716, United States
| | - Benjamin Cancès
- Université de Reims Champagne-Ardenne - GEGENAA - EA 3795, 2 esplanade Roland Garros, 51100 Reims, France
| | - Xavier Morvan
- Université de Reims Champagne-Ardenne - GEGENAA - EA 3795, 2 esplanade Roland Garros, 51100 Reims, France
| | - Alain Devos
- Université de Reims Champagne-Ardenne - GEGENAA - EA 3795, 2 esplanade Roland Garros, 51100 Reims, France
| | - Vincent Barbin
- Université de Reims Champagne-Ardenne - GEGENAA - EA 3795, 2 esplanade Roland Garros, 51100 Reims, France
| | - Patrick Ollivier
- BRGM, 3 av. C. Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| |
Collapse
|
17
|
Vega M, Nerenberg R, Vargas IT. Perchlorate contamination in Chile: Legacy, challenges, and potential solutions. ENVIRONMENTAL RESEARCH 2018; 164:316-326. [PMID: 29554623 DOI: 10.1016/j.envres.2018.02.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
This paper reviews the unique situation of perchlorate contamination in Chile, including its sources, presence in environmental media and in the human population, and possible steps to mitigate its health impacts. Perchlorate is a ubiquitous water contaminant that inhibits thyroid function. Standards for drinking water range from 2 to 18 µg L-1 in United States and Europe. A major natural source of perchlorate contamination is Chile saltpeter, found in the Atacama Desert. High concentrations of perchlorate have presumably existed in this region, in soils, sediments, surface waters and groundwaters, for millions of years. As a result of this presence, and the use of Chile saltpeter as a nitrogen fertilizer, perchlorate in Chile has been found at concentrations as high as 1480 µg L-1 in drinking water, 140 µg/kg-1 in fruits, and 30 µg L-1 in wine. Health studies in Chile have shown concentrations of 100 µg L-1 in breast milk and 20 µg L-1 in neonatal serum. It is important to acknowledge perchlorate as a potential health concern in Chile, and assess mitigation strategies. A more thorough survey of perchlorate in Chilean soils, sediments, surface waters, groundwaters, and food products can help better assess the risks and potentially develop standards. Also, perchlorate treatment technologies should be more closely assessed for relevance to Chile. The Atacama Desert is a unique biogeochemical environment, with millions of years of perchlorate exposure, which can be mined for novel perchlorate-reducing microorganisms, potentially leading to new biological treatment processes for perchlorate-containing waters, brines, and fertilizers.
Collapse
Affiliation(s)
- Marcela Vega
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall of Engineering, South Bend, IN 46556, United States; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Robert Nerenberg
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall of Engineering, South Bend, IN 46556, United States
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
18
|
Zakon Y, Ronen Z, Halicz L, Gelman F. 37Cl/ 35Cl isotope ratio analysis in perchlorate by ion chromatography/multi collector -ICPMS: Analytical performance and implication for biodegradation studies. CHEMOSPHERE 2017; 184:192-196. [PMID: 28595144 DOI: 10.1016/j.chemosphere.2017.05.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
In the present study we propose a new analytical method for 37Cl/35Cl analysis in perchlorate by Ion Chromatography(IC) coupled to Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). The accuracy of the analytical method was validated by analysis of international perchlorate standard materials USGS-37 and USGS -38; analytical precision better than ±0.4‰ was achieved. 37Cl/35Cl isotope ratio analysis in perchlorate during laboratory biodegradation experiment with microbial cultures enriched from the contaminated soil in Israel resulted in isotope enrichment factor ε37Cl = -13.3 ± 1‰, which falls in the range reported previously for perchlorate biodegradation by pure microbial cultures. The proposed analytical method may significantly simplify the procedure for isotope analysis of perchlorate which is currently applied in environmental studies.
Collapse
Affiliation(s)
- Yevgeni Zakon
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem, 95501, Israel; Department of Chemistry, The Hebrew University, Jerusalem, 91904, Israel
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Ludwik Halicz
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem, 95501, Israel; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089, Warsaw, Poland
| | - Faina Gelman
- Geological Survey of Israel, 30 Malkhei Israel St., Jerusalem, 95501, Israel.
| |
Collapse
|
19
|
Calderón R, Godoy F, Escudey M, Palma P. A review of perchlorate (ClO 4-) occurrence in fruits and vegetables. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:82. [PMID: 28130763 DOI: 10.1007/s10661-017-5793-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Since the 1990s, a large number of studies around the world have reported the presence of perchlorate in different types of environmental matrices. In view of their inherent characteristics, such as high solubility, mobility, persistence, and low affinity for the surface of soil, perchlorates are mobilized through the water-soil system and accumulate in edible plant species of high human consumption. However, the ingestion of food products containing perchlorate represents a potential health risk to people due to their adverse effects on thyroid, hormone, and neuronal development, mainly in infants and fetuses. At present, research has been centered on determining sources, fates, and remediation methods and not on its real extension in vegetables under farming conditions. This review presents a comprehensive overview and update of the frequent detection of perchlorate in fruits and vegetables produced and marketed around the world. Additionally, the impact of fertilizer on the potential addition of perchlorate to soil and its mobility in the water-soil-plant system is discussed. This review is organized into the following sections: sources of perchlorate, mobility in the water-soil system, presence in fruits and vegetables in different countries, international regulations, and toxicological studies. Finally, recommendations for future studies concerning perchlorate in fruits and vegetables are presented.
Collapse
Affiliation(s)
- R Calderón
- Instituto de Investigaciones Agropecuarias, INIA La Platina, Santa Rosa, 11610, La Pintana, Santiago, Chile.
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, segundo piso, Santiago, Chile.
| | - F Godoy
- Centro i-mar, Universidad de los Lagos, Camino Chinquihue Km 6, Casilla 557, Puerto Montt, Chile
| | - M Escudey
- Facultad de Química and Biología, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, C 40-33, 7254758, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago, Chile
| | - P Palma
- Laboratorio de Salu Pública, Ambiental y Laboral, SEREMI de Salud Región Metropolitana, San Diego 630, piso 8, Santiago, Chile
| |
Collapse
|
20
|
Gilchrist ES, Healy DA, Morris VN, Glennon JD. A review of oxyhalide disinfection by-products determination in water by ion chromatography and ion chromatography-mass spectrometry. Anal Chim Acta 2016; 942:12-22. [DOI: 10.1016/j.aca.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
|
21
|
Tennakone K. Contact Electrification of Regolith Particles and Chloride Electrolysis: Synthesis of Perchlorates on Mars. ASTROBIOLOGY 2016; 16:811-816. [PMID: 27681637 DOI: 10.1089/ast.2015.1424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Contact electrification of chloride-impregnated martian regolith particles due to eolian agitation and moisture condensation on coalesced oppositely charged grains may lead to spontaneous electrolysis that generates hypochlorite, chlorite, chlorate, and perchlorate with a concomitant reduction of water to hydrogen. This process is not curtailed even if moisture condenses as ice because chloride ionizes on the surface of ice. Limitations dictated by potentials needed for electrolysis and breakdown electric fields enable estimation of the required regolith grain size. The estimated dimension turns out to be of the same order of magnitude as the expected median size of martian regolith, and a simple calculation yields the optimum rate of perchlorate production. Key Words: Mars oxidants-Perchlorate-Dust electrification-Electrolysis. Astrobiology 16, 811-816.
Collapse
|
22
|
Kumarathilaka P, Oze C, Indraratne SP, Vithanage M. Perchlorate as an emerging contaminant in soil, water and food. CHEMOSPHERE 2016; 150:667-677. [PMID: 26868023 DOI: 10.1016/j.chemosphere.2016.01.109] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Perchlorate ( [Formula: see text] ) is a strong oxidizer and has gained significant attention due to its reactivity, occurrence, and persistence in surface water, groundwater, soil and food. Stable isotope techniques (i.e., ((18)O/(16)O and (17)O/(16)O) and (37)Cl/(35)Cl) facilitate the differentiation of naturally occurring perchlorate from anthropogenic perchlorate. At high enough concentrations, perchlorate can inhibit proper function of the thyroid gland. Dietary reference dose (RfD) for perchlorate exposure from both food and water is set at 0.7 μg kg(-1) body weight/day which translates to a drinking water level of 24.5 μg L(-1). Chromatographic techniques (i.e., ion chromatography and liquid chromatography mass spectrometry) can be successfully used to detect trace level of perchlorate in environmental samples. Perchlorate can be effectively removed by wide variety of remediation techniques such as bio-reduction, chemical reduction, adsorption, membrane filtration, ion exchange and electro-reduction. Bio-reduction is appropriate for large scale treatment plants whereas ion exchange is suitable for removing trace level of perchlorate in aqueous medium. The environmental occurrence of perchlorate, toxicity, analytical techniques, removal technologies are presented.
Collapse
Affiliation(s)
- Prasanna Kumarathilaka
- Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Christopher Oze
- Geology Department, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA
| | - S P Indraratne
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Sri Lanka
| | - Meththika Vithanage
- Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
23
|
Calderón R, Palma P, Parker D, Escudey M. Capture and accumulation of perchlorate in lettuce. Effect of genotype, temperature, perchlorate concentration, and competition with anions. CHEMOSPHERE 2014; 111:195-200. [PMID: 24997918 DOI: 10.1016/j.chemosphere.2014.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/07/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Various studies have evaluated the accumulation of ClO4(-) in lettuce (Lactuca sativa), but very few have dealt with the variables that can interfere with its capture. The present study evaluates the transfer of ClO4(-) in two L. sativa varieties: butter head (L. sativa var. capitata) and cos lettuce (L. sativa var. crispa) under hydroponic conditions. The ClO4(-) concentrations used correspond to levels (1 and 2mgL(-1)), measured in irrigation water in the Iquique region in the north of Chile. Results indicate that the capture of ClO4(-) is dependent on its concentration, lettuce genotype, and temperature. The butter head variety accumulates the highest perchlorate concentrations. Anion competition involving NO3(-) (16 and 48mM), Cl(-) (23 and 56mM), and SO4(2-) (10 and 20mM) was evaluated, being NO3(-) (48mM), the most significant competition reducing the concentration of ClO4(-) in tissues of L. sativa varieties.
Collapse
Affiliation(s)
- Raúl Calderón
- Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile.
| | - Paulina Palma
- Laboratorio Sanitario Ambiental, SEREMI de Salud Región Metropolitana, San Diego 630 piso 8, Santiago, Chile
| | - David Parker
- Soil and Water Science Section, Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Mauricio Escudey
- Universidad de Santiago de Chile, Facultad de Química y Biología, Av. B. O'Higgins 3363, C 40-33, 7254758 Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|