1
|
Hasan MM, Tama RT, Dona HA, Hoque NS, Rahaman MA, Alam MA. Comprehensive review of phthalate exposure: Health implications, biomarker detection and regulatory standards. J Steroid Biochem Mol Biol 2025; 247:106671. [PMID: 39746525 DOI: 10.1016/j.jsbmb.2024.106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Phthalates are a wide family of chemicals that are used in many different industrial applications used in many different industrial applications, including the production of plastics, toys, food packaging particularly for kids, and medical equipment. Due to their various chemical and physical properties, phthalates may negatively impact humans, animals, and the environment. Thus the potential for phthalate exposure and harm to humans, animals, and the environment is high because its presence is alarming. Phthalates can be ingested, inhaled, absorbed topically, or via iatrogenic exposure in animals and humans. This article aimed to ascertain the modes of exposure, fate and detection techniques, and harmful effects of phthalates on humans, animals, and the environment. This review also shows that the intake of phthalate above the established daily limit from sources such as food, toys, and air causes serious harm, including impaired immune function, difficulties in pregnancy, loss of reproduction, and damage to the kidneys, lungs, heart, and brain in humans. Children and pregnant women are the most impacted groups and phthalates also negatively affect the environment and wildlife. A few methods to determine phthalate exposure, such as the LC and the HPLC-MS/MS methods, which employ human fluid or dust air as a biomarker, are also addressed here. Consequently, this comprehensive review aims to provide a detailed analysis of the existing evidence regarding explicit links between exposure to phthalates and subsequent health outcomes that may be directly related to this exposure. Additionally, we reviewed the developed and validated analytical methods and supplemented the literature with partial biomonitoring data on their metabolites.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhanmondi, Dhaka 1205, Bangladesh.
| | - Rahima Tanbin Tama
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh.
| | - Humayra Afroz Dona
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh
| | - Naeema Salatia Hoque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Md Ashikur Rahaman
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Md Ashraful Alam
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh; Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| |
Collapse
|
2
|
Dang H, Zhang P, Zheng J, Chen S, Wei W, Wang X. Long-term inhalation exposure: A model for phthalate accumulation in the respiratory tract. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117207. [PMID: 39426105 DOI: 10.1016/j.ecoenv.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Inhalation is a major pathway for phthalates (PAEs), an endocrine disruptor, to enter the human body. The actual internal exposure amount that participates in metabolism cannot be estimated by calculating total inhalation intake. OBJECTIVE To estimate the accumulation in each region of the respiratory tract after long-term exposure to PAEs in different populations. METHODS A mass transfer model was developed to simulate the long-term accumulation of PAEs in respiratory tract through inhalation. The model considered (1) mass transfer of PAEs in three phases across seven regions, (2) the effect of temperature differences on the mass transfer process. Based on this model, we simulated adult exposure to PAEs in a laboratory, identified key model parameters, and further simulated various scenarios for children, adults, and elders. RESULTS PAEs are not completely cleared from the respiratory tract after 16 hours, following 8 hours of daily exposure. Under regular laboratory environment, accumulation after 30 days is 3.8 times higher than that after the first day. The distribution of PAEs between the gas and mucus phases has a greater impact on the results than between the gas and particle phases. Children are at the highest risk to Diethyl phthalate (DEP) exposure compared with adults and elders. Nearly 80 % of DEP is exhaled, with 14 % accumulating in the alveolar region after an hour. CONCLUSION This model links indoor air PAEs to human internal exposure, showing that most PAEs are exhaled, while the remainder accumulates in the respiratory tract and may participate in human metabolism.
Collapse
Affiliation(s)
- Haoyu Dang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Jiachen Zheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Shengwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wenjuan Wei
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, 84 Avenue Jean Jaurès, Marne la Vallée Cedex 2, Champs sur Marne 77447, France.
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
3
|
Pan J, Li X, Ding P, Luo H, Cai S, Ge Q, Zhang L, Hu G. Levels, sources, and health risk assessment of phthalate acid esters in indoor dust of various microenvironments in university. CHEMOSPHERE 2024; 364:143182. [PMID: 39182730 DOI: 10.1016/j.chemosphere.2024.143182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Phthalate acid esters (PAEs), as a common group of plasticizers, are widely present in indoor environments and pose a risk to human health. Indoor dust samples collected from dormitory, classroom, laboratory, and office in several universities in China, were analyzed for seven types of PAEs. The total concentrations of seven PAEs (Σ7PAEs) ranged from 4.87 to 360 μg/g, with a median concentration of 51 μg/g, which is lower than that reported by other studies. Using the median concentration of Σ7PAEs as a metric, we assessed the levels of contamination in different microenvironments, resulting in the following ranking: dormitory > classroom > laboratory > office. There are significant differences in the levels of individual PAEs in different microenvironments. Radiation from sunlight, ventilation rates, cleaning frequency, and sprays were influential factors for the concentrations of individual PAEs in indoor dust. The indoor environmental conditions and consumption patterns profoundly affect PAEs levels. The sources of PAEs in classroom and office were more complex than in dormitory and laboratory. Daily intakes of PAEs were used to calculate carcinogenic and non-carcinogenic human risk for males and females, indicating a low health risk to humans. This is the first study to assess the risk of PAEs in university microenvironments and provides a valuable reference for further research.
Collapse
Affiliation(s)
- Jun Pan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haojie Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Sha Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Qing Ge
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liuyi Zhang
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China.
| |
Collapse
|
4
|
Lu M, Gan H, Zhou Q, Han F, Wang X, Zhang F, Tong J, Huang K, Gao H, Yan S, Jin Z, Wang Q, Tao F. Trimester-specific effect of maternal co-exposure to organophosphate esters and phthalates on preschooler cognitive development: The moderating role of gestational vitamin D status. ENVIRONMENTAL RESEARCH 2024; 251:118536. [PMID: 38442813 DOI: 10.1016/j.envres.2024.118536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Organophosphate esters (OPEs) and phthalate acid esters (PAEs) are prevalent endocrine-disrupting chemicals (EDCs). Humans are often exposed to OPEs and PAEs simultaneously through multiple routes. Given that fetal stage is a critical period for neurodevelopment, it is necessary to know whether gestational co-exposure to OPEs and PAEs affects fetal neurodevelopment. However, accessible epidemiological studies are limited. The present study included 2, 120 pregnant women from the Ma'anshan Birth Cohort (MABC) study. The concentrations of tris (2-chloroethyl) phosphate (TCEP), 6 OPE metabolites and 7 PAE metabolites were measured in the first, second and third trimester using ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS). Cognitive development of preschooler was assessed based on the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV) of the Chinese version. Generalized estimating equations (GEEs), restricted cubic spline (RCS) and generalized additive models (GAMs) were employed to explore the associations between individual OPE exposure and preschooler cognitive development. The quantile-based g-computation (QGC) method was used to estimate the joint effect of PAEs and OPEs exposure on cognitive development. GEEs revealed significant adverse associations between diphenyl phosphate (DPHP) (β: -0.58, 95% CI: -1.14, -0.01), bis (2-butoxyethyl) phosphate(BBOEP) (β: -0.44, 95% CI: -0.85, -0.02), bis(1-chloro-2-propyl) phosphate (BCIPP) (β: -0.81, 95%CI: -1.43, -0.20) and full-scale intelligence quotient (FSIQ) in the first trimester; additionally, TCEP and bis(2-ethylhexyl) phosphate (BEHP) in the second trimester, as well as DPHP in the third trimester, were negatively associated with cognitive development. Through the QGC analyses, mixture exposure in the first trimester was negatively associated with FSIQ scores (β: -1.70, 95% CI: -3.06, -0.34), mono-butyl phthalate (MBP), BCIPP, and DPHP might be the dominant contributors after controlling for other OPEs and PAEs congeners. Additionally, the effect of OPEs and PAEs mixture on cognitive development might be driven by vitamin D deficiency.
Collapse
Affiliation(s)
- Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiong Zhou
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feifei Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaorui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fu Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, China
| | - Zhongxiu Jin
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunan Wang
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
5
|
Li N, Liu J, Ying G, Lee JCK, Leung TF, Covaci A, Deng WJ. Endocrine disrupting chemicals in children's and their parents' urine: Is the exposure related to the Chinese and Western lifestyle? Int J Hyg Environ Health 2024; 259:114383. [PMID: 38652942 DOI: 10.1016/j.ijheh.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 μg/gcrea and 2.5 μg/gcrea in Guangzhou, and 93.7 μg/gcrea and 2.9 μg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Guangguo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - John Chi-Kin Lee
- Academy of Applied Policy Studies and Education Futures, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China
| | - Ting Fan Leung
- Department of Paediatrics & Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China.
| |
Collapse
|
6
|
Santacruz-Márquez R, Neff AM, Mourikes VE, Fletcher EJ, Flaws JA. The effects of inhaled pollutants on reproduction in marginalized communities: a contemporary review. Inhal Toxicol 2024; 36:286-303. [PMID: 37075037 PMCID: PMC10584991 DOI: 10.1080/08958378.2023.2197941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023]
Abstract
Important differences in health that are closely linked with social disadvantage exist within and between countries. According to the World Health Organization, life expectancy and good health continue to increase in many parts of the world, but fail to improve in other parts of the world, indicating that differences in life expectancy and health arise due to the circumstances in which people grow, live, work, and age, and the systems put in place to deal with illness. Marginalized communities experience higher rates of certain diseases and more deaths compared to the general population, indicating a profound disparity in health status. Although several factors place marginalized communities at high risk for poor health outcomes, one important factor is exposure to air pollutants. Marginalized communities and minorities are exposed to higher levels of air pollutants than the majority population. Interestingly, a link exists between air pollutant exposure and adverse reproductive outcomes, suggesting that marginalized communities may have increased reproductive disorders due to increased exposure to air pollutants compared to the general population. This review summarizes different studies showing that marginalized communities have higher exposure to air pollutants, the types of air pollutants present in our environment, and the associations between air pollution and adverse reproductive outcomes, focusing on marginalized communities.
Collapse
Affiliation(s)
| | - Alison M. Neff
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | | | - Endia J. Fletcher
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| |
Collapse
|
7
|
Yesildagli B, Göktaş RK, Ayaz T, Olgun B, Dokumacı EN, Özkaleli M, Erdem A, Yurtsever M, Doğan G, Yurdakul S, Yılmaz Civan M. Phthalate ester levels in agricultural soils of greenhouses, their potential sources, the role of plastic cover material, and dietary exposure calculated from modeled concentrations in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133710. [PMID: 38364582 DOI: 10.1016/j.jhazmat.2024.133710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Soil samples collected from 50 greenhouses (GHs) cultivated with tomatoes (plastic-covered:24, glass-covered:26), 5 open-area tomato growing farmlands, and 5 non-agricultural areas were analyzed in summer and winter seasons for 13 PAEs. The total concentrations (Σ13PAEs) in the GHs ranged from 212 to 2484 ng/g, wheeas the concentrations in open-area farm soils were between 240 and 1248 ng/g. Σ13PAE in non-agricultural areas was lower (35.0 - 585 ng/g). PAE exposure through the ingestion of tomatoes cultivated in GH soils and associated risks were estimated with Monte Carlo simulations after calculating the PAE concentrations in tomatoes using a partition-limited model. DEHP was estimated to have the highest concentrations in the tomatoes grown in both types of GHs. The mean carcinogenic risk caused by DEHP for tomato grown in plastic-covered GHs, glass-covered GHs, and open-area soils were 2.4 × 10-5, 1.7 × 10-5 and 1.1 × 10-5, respectively. Based on Positive Matrix Factorization results, plastic material usage in GHs (including plastic cover material source for plastic-GHs) was found to be the highest contributing source in both types of GHs. Microplastic analysis indicated that the ropes and irrigation pipes inside the GHs are important sources of PAE pollution. Pesticide application is the second highest contributing source.
Collapse
Affiliation(s)
- Berkay Yesildagli
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| | - Recep Kaya Göktaş
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey.
| | - Tuğba Ayaz
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| | - Bihter Olgun
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ebru Nur Dokumacı
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Merve Özkaleli
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ayça Erdem
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Meral Yurtsever
- Department of Environmental Engineering, Sakarya University, 54187, Sakarya, Turkey
| | - Güray Doğan
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Sema Yurdakul
- Department of Environmental Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Mihriban Yılmaz Civan
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| |
Collapse
|
8
|
Guo Z, Wang L, Li Y, Wu Z, Wang K, Duan J. Dust phase and window film phase phthalates in dormitories: profile characteristics, source screening, and estimated gas-phase concentration and dermal exposure comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15257-15270. [PMID: 38291205 DOI: 10.1007/s11356-024-32019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Recently, phthalate exposure has become a major public health concern. However, gaps still remain in our understanding of phthalate profile characteristics, source screening, and gas-phase estimation. This study measured phthalate concentrations in dust and window films in 101 dormitories at 13 universities in Beijing, China, from October to December 2019. Based on the phthalate concentrations in the dust and window films, we estimated the gas-phase phthalate concentrations using steady-state and instantaneous equilibrium models, respectively, and male and female students' dermal exposure using the Monte Carlo simulation. Commonly used materials and supplies were screened for phthalate sources and evaluated using the positive matrix factorization (PMF) model. The results showed that the detection frequency of ten phthalates ranged from 79.2 to 100% in dust and from 84.2 to 100% in window films. Dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), and dibutyl phthalate (DBP) were the most abundant phthalates in both indoor media and were also predominant in the indoor materials and supplies. The PMF results indicated that the potential sources of phthalates in dust and window films had both similarities and differences. Indoor door seals, paint, coatings, cables, air-conditioning rubber cable ties, wallpaper, and window seals were highly probable sources of phthalates. The gas-phase phthalate concentrations estimated using the two methods differed, especially for phthalates with high octanol-air partition coefficients (Koa), varying by 1-2 orders of magnitude. Moreover, compared with related studies, the gas-phase concentrations were significantly underestimated for phthalates with high Koa values, while the estimated gas-phase concentrations of phthalates with low Koa values were closer to the measured values. The estimated dermal exposure using the two methodologies also considerably differed. Such findings suggest that more attention should be focused on the exposure risk from the dust phase and window film phase phthalates.
Collapse
Affiliation(s)
- Zichen Guo
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yatai Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zaixing Wu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jiahui Duan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
9
|
Tran-Lam TT, Quan TC, Bui MQ, Dao YH, Le GT. Endocrine-disrupting chemicals in Vietnamese marine fish: Occurrence, distribution, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168305. [PMID: 37935261 DOI: 10.1016/j.scitotenv.2023.168305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The release of endocrine-disrupting chemicals (EDCs) into the aquatic environment, specifically the oceans, is increasing, leading to adverse effects on the marine ecosystem. Using optimized QuEChERS extraction methods, the study created the first contamination profiles of 44 EDCs, including organic ultraviolet compounds, pharmaceutically active compounds, hormones, and phthalate esters, in 114 fish muscle samples from five species collected along the Vietnamese coast. The study found that largehead hairtail exhibited the highest total EDCs at 208.3 ng g-1 lipid weight (lw), while Indian catfish displayed the lowest concentration at 105.5 ng g-1 lw. Besides, the study observed notable variations in the total EDCs across distinct fish species. This study hypothesized that the marine economic characteristics of each research location have a significant role in shaping the pollution profile of EDCs found in fish specimens taken from the corresponding area. As a result, a notable disparity in the composition of organic ultraviolet compounds has been observed among the three regions of North, Central, and South Vietnam (Mann-Whitney U test, p < 0.05). Despite these findings, EDC-contaminated fish did not pose any health risks to Vietnam's coastal population.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Institute of Mechanics and Applied Informatics, VAST, 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City, 70000, Viet Nam
| | - Thuy Cam Quan
- Viet Tri University of Industry, 9 Tien Son, Tien Cat, Viet Tri, Phu Tho 75000, Viet Nam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam.
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| |
Collapse
|
10
|
Shende N, Hippargi G, Gurjar S, Kumar AR, Rayalu S. Occurrence of phthalates in facemasks used in India and its implications for human exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:166-182. [PMID: 36242556 DOI: 10.1080/09603123.2022.2135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Synthetic polymers with additives are used in the manufacturing of face masks (FMs); hence, FMs could be a potential source of exposure to phthalic acid esters (PAEs). India stands second in the world in terms of the FMs usage since the beginning of Covid-19 pandemic. However, little is known about the PAEs content of FMs used in India. Some PAEs, such as DEHP and DBP are suspected endocrine disrupting chemicals (EDCs); hence, wearing FM may increase the risk of exposure to these EDCs. In this study, we collected 91 samples of FMs from eight Indian cities and analyzed for five PAEs viz. DMP, DEP, DBP, BBP, and DEHP. The PAEs contents in FMs ranged from 101.79 to 27,948.64 ng/g. The carcinogenic risk of N 95 with filter, N-95, and cloth masks was higher than the threshold levels. The findings indicate the need to control PAEs in FMs through regulatory actions.
Collapse
Affiliation(s)
- Nandini Shende
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Suyog Gurjar
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadhana Rayalu
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Hammel SC, Eftekhari A, Eichler CMA, Liu CW, Nylander-French LA, Engel LS, Lu K, Morrison GC. Reducing Transdermal Uptake of Semivolatile Plasticizers from Indoor Environments: A Clothing Intervention. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20678-20688. [PMID: 38019971 DOI: 10.1021/acs.est.3c06142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Models and laboratory studies suggest that everyday clothing influences the transdermal uptake of semivolatile organic compounds, including phthalate plasticizers, from indoor environments. However, this effect has not been documented in environmental exposure settings. In this pilot study, we quantified daily excretion of 17 urinary metabolites (μg/day) for phthalates and phthalate alternatives in nine participants during 5 days. On Day 0, baseline daily excretion was determined in participants' urine. Starting on Day 1, participants refrained from eating phthalate-heavy foods and using personal care products. On Days 3 and 4, participants wore precleaned clothing as an exposure intervention. We observed a reduction in the daily excretion of phthalates during the intervention; mono-n-butyl phthalate, monoisobutyl phthalate (MiBP), and monobenzyl phthalate were significantly reduced by 35, 38, and 56%, respectively. Summed metabolites of di(2-ethylhexyl)phthalate (DEHP) were also reduced (27%; not statistically significant). A similar reduction among phthalate alternatives was not observed. The daily excretion of MiBP during the nonintervention period strongly correlated with indoor air concentrations of diisobutyl phthalate (DiBP), suggesting that inhalation and transdermal uptake of DiBP from the air in homes are dominant exposure pathways. The results indicate that precleaned clothing can significantly reduce environmental exposure to phthalates and phthalate alternatives.
Collapse
Affiliation(s)
- Stephanie C Hammel
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- National Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Azin Eftekhari
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Clara M A Eichler
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leena A Nylander-French
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Azanaw J, Sisay Chanie G. Spatial variation and determinants of solid fuel use in Ethiopia; Mixed effect and spatial analysis using 2019 Ethiopia Mini Demographic and Health Survey dataset. PLoS One 2023; 18:e0294841. [PMID: 38033018 PMCID: PMC10688864 DOI: 10.1371/journal.pone.0294841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND According to UNSD, World Bank, and WHO, a 2020 joint report, 3 billion people who used solid fuel were found in low and middle-income countries. The burning of such type of fuel emits a variety of pollutants such as PM2.5, PM10, CO, NO2, organic compounds, and other substances which a had wide range of public health problems The evidence from the WHO report, indoor air pollution was attributed to around 3.2 million deaths each year in 2020, and more than 237 000 deaths of children under the age of five. This study aims to investigate solid fuel prevalence, predictors, and spatial variation in Ethiopia. METHOD This study was conducted in Ethiopia based on the fifth Ethiopian Demographic and Health Surveys 2019 dataset. 8,663 households were successfully interviewed at a response rate of 99%. Weighted by sampling weight was done to do a reliable statistical analysis. Fuel type was used as the outcome variable whereas sex of household head (male or female), wealth index (poor, middle, and rich), educational status (no education, primary, secondary, higher), having television and radio, a separate room used as a kitchen, were individual predictor variables and community level education(lower/higher), residence(urban/rural), community level media exposure (exposed/unexposed), region (pastoralist, semi-pastoralist, Agrarian, and City administration) were community level variables. All the above analyses were conducted using Excel Microsoft 2016, STATA 14, ArcGIS 10.7, and SaTScan 10.1 software. RESULTS The majority (72.62%) of household heads were males. The overall national level of solid fuel use was 87.13% (95% CI (86.4%-87.82%)). From this 87.13% of solid fuel use, 18.60% accounts for urban and 68.53% for rural parts of the country. Educational status, having television, accessing electricity, and wealth index were individual-level variables community-level education, type of residence, and region were community-level variables significantly associated factors towards solid fuel use in our study. Global (z-score = 33.109144, P-value <0.0001), local (hot spot, cluster, and outlier), and Spatial Scan statistical analyses revealed that there was a major geographical variation in solid fuel use across Ethiopia. CONCLUSION Based on this finding, the prevalence of solid fuel use was higher in Ethiopia. Educational status, having television, accessing electricity, and wealth index were individual-level variables and community-level education, type of residence, and region were community-level variables statistically significant factors in determining fuel choice for cooking. There was significant spatial variation in the prevalence of solid-fuel use across the country. In order to addressing such heavily dependent on solid fuel use, responsible bodies like health policy makers, national and international organizations, and public health researchers should work on showing health problems of solid fuel use and the means of increasing clean fuel use. Substantial policy modifications are desirable to reach access to clean fuels and technologies (SDG 7.1.2) by 2030 to address health inequities.
Collapse
Affiliation(s)
- Jember Azanaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Sisay Chanie
- Department of Clinical Pharmacy, School of Pharmacy, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
13
|
Le TM, Le Quang H, Tran AH, Quang MB, Vu ND, Thi HN, Khanh HV, Kannan K, Tran TM. Co-occurrence of phthalic acid esters (PAEs) and cyclic volatile methylsiloxanes (cVMSs) in fine particulate matter (PM 0.5 and PM 0.1) collected from an industrial area in Vietnam. ENVIRONMENTAL RESEARCH 2023; 237:117018. [PMID: 37657605 DOI: 10.1016/j.envres.2023.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Distribution patterns of 10 phthalic acid diesters (PAEs) and four cyclic volatile methylsiloxanes (cVMSs) were investigated in fine particulate matter (PM0.1 and PM0.5) collected from Bac Ninh, an industrial province in Vietnam during September-October in 2021. Total concentrations of PAEs found in PM0.1 and PM0.5 were in the ranges of 1.76-372 (median: 34.0 ng/m3) and 2.23-895 ng/m3 (median: 15.4 ng/m3), respectively. Among PAEs, di-n-butyl phthalate (DBP) was the most abundant compound found in PM0.1, whereas, di-2-(ethyl)hexyl phthalate (DEHP) was measured at the highest concentration in PM0.5. Total concentrations of cVMSs measured in PM0.1 and PM0.5 were in the ranges of method quantification limit (MQL)-203 (median: 2.10 ng/m3) and MQL-537 ng/m3 (median: 0.389 ng/m3), respectively. Among cVMSs, decamethylcyclopentasiloxane (D5) was found at the highest concentration in both PM0.1 and PM0.5 fractions of particulate matter. The concentration ratios between PAEs and cVMSs in PM0.1/PM0.5 were greater than 1 (except di-n-octyl phthalate: DnOP), suggesting that these chemicals tend to sorb to PM0.1 more preferentially than PM0.5. Among sampling locations, high concentrations of PAEs and cVMSs were found at traffic intersections (Que Vo district) and a craft village (Tu Son city). Relatively stronger correlations existed between cVMSs pairs in PM0.1 and PM0.5 (correlation coefficient: 0.73-1) than those of PAEs (-0.83-0.90). The human exposure doses to PAEs and cVMSs through inhalation of particulate matter were estimated based on the measured concentrations in PM0.1 and PM0.5 fractions. The estimated exposure doses of PAEs and cVMSs for infants (7.1 ng/kg-bw/d and 2.5 ng/kg-bw/d) were higher than those for adults (2.6 ng/kg-bw/d and 0.9 ng/kg-bw/d).
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Huong Le Quang
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Anh Hai Tran
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Minh Bui Quang
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Huong Nguyen Thi
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Hoa Vu Khanh
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | | | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam.
| |
Collapse
|
14
|
Zhang W, Zheng N, Wang S, Sun S, An Q, Li X, Li Z, Ji Y, Li Y, Pan J. Characteristics and health risks of population exposure to phthalates via the use of face towels. J Environ Sci (China) 2023; 130:1-13. [PMID: 37032026 DOI: 10.1016/j.jes.2022.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/19/2023]
Abstract
The production of face towels is growing at an annual rate of about 4% in China, reaching 1.13 million tons by 2021. Phthalates (PAEs) are widely used in textiles, and face towels, as an important household textile, may expose people to PAEs via the skin, further leading to health risks. We collected new face towels and analyzed the distribution characterization of PAEs in them. The changes of PAEs were explored in a face towel use experiment and a simulated laundry experiment. Based on the use of face towels by 24 volunteers, we calculated the estimated daily intake (EDI) and comprehensively assessed the hazard quotient (HQ), hazard index (HI), and dermal cancer risk (DCR) of PAEs exposure in the population. PAEs were present in new face towels at total concentrations of <MDL-2388 ng/g, with a median of 173.2 ng/g, which was a lower contamination level compared with other textiles. PAE contents in used face towels were significantly higher than in new face towels. The concentrations of PAEs in coral velvet were significantly higher than those in cotton. Water washing removed some PAEs, while detergent washing increased the PAE content on face towels. Gender, weight, use time, and material were the main factors affecting EDI. The HQ and HI were less than 1, which proved PAEs had no significant non-carcinogenic health risks. Among the five target PAEs studied, DEHP was the only carcinogenic PAE and may cause potential health risks after long-term exposure. Therefore, we should pay more attention to DEHP.
Collapse
Affiliation(s)
- Wenhui Zhang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- College of New Energy and Environment, Jilin University, Changchun 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siyu Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zimeng Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yining Ji
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
15
|
Hoang MTT, Le GT, Kiwao K, Duong HT, Nguyen TQ, Phan TQ, Bui MQ, Truong DA, Trinh HT. Occurrence and risk of human exposure to organophosphate flame retardants in indoor air and dust in Hanoi, Vietnam. CHEMOSPHERE 2023; 328:138597. [PMID: 37028719 DOI: 10.1016/j.chemosphere.2023.138597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/07/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The presence and distribution of thirteen organophosphate flame retardants (OPFRs) were investigated in indoor air and dust samples collected in Hanoi, Vietnam. The total OPFRs (ƩOPFRs) concentrations in indoor air and dust samples were 42.3-358 ng m-3 (median 101 ng m-3) and 1290-17,500 ng g-1 (median 7580 ng g-1), respectively. The profile of OPFRs in both indoor air and dust indicated that tris(1-chloro-2-propyl) phosphate (TCIPP) was the most dominant compound with a median concentration of 75.3 ng m-3 and 3620 ng g-1, contributing 75.2% and 46.1% to ƩOPFRs concentrations in indoor air and dust, respectively, followed by tris(2-butoxyethyl) phosphate (TBOEP), with a median concentration of 16.3 ng m-3 and 2500 ng g-1, contributing 14.1% and 33.6% to ƩOPFRs concentrations in indoor air and dust, respectively. The levels of OPFRs in the indoor air samples and corresponding indoor dust samples showed a strong positive correlation. The total estimated daily intakes (EDItotal) of ƩOPFRs (via air inhalation, dust ingestion, and dermal absorption) for adults and toddlers under the median and high exposure scenarios were 36.7 and 160 ng kg-1 d-1, and 266 and 1270 ng kg-1 d-1, respectively. Among the investigated exposure pathways, dermal absorption was a primary exposure pathway to OPFRs for both toddlers and adults. The hazard quotients (HQ) ranged from 5.31 × 10-8 to 6.47 × 10-2 (<1), and the lifetime cancer risks (LCR) were from 2.05 × 10-11 to 7.37 × 10-8 (<10-6), indicating that human health risks from exposure to OPFRs in indoor environments are not significant.
Collapse
Affiliation(s)
- Minh Tue Thi Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam; Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Kadokami Kiwao
- The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan
| | - Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Trung Quang Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Thang Quang Phan
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Dung Anh Truong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam.
| |
Collapse
|
16
|
Wang W, Kannan K. Leaching of Phthalates from Medical Supplies and Their Implications for Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7675-7683. [PMID: 37154399 PMCID: PMC10210534 DOI: 10.1021/acs.est.2c09182] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
In this study, 72 single-use medical products, grouped into four categories, namely, creams/liquids (n = 8), medical devices (n = 46; 15 of 46 labeled "di(2-ethylhexyl)phthalate (DEHP)-free"), first aid products (n = 13), and intravenous (IV) infusion/irrigation fluids (n = 5), were collected from an intensive care unit in a hospital in New York State in 2015 and analyzed for the migration of 10 phthalates in ethanol/water (1:1) mixture for 1 h. The total phthalate concentration (Σphthalates) leached from medical products ranged from 0.04 to 54,600 μg. DEHP was the major phthalate found in 99% of the samples analyzed, with the highest amount leached from respiratory support devices (median: 6560 μg). DEHP was also found at notable concentrations in products labeled as "DEHP-free". Direct exposure to phthalates from the use of medical devices and first aid supplies and dermal intake from the use of creams/lotions were calculated. The highest DEHP exposure dose of 730 μg/kg bw/day was determined from the use of cannula for neonates. This is the first study to document the amount of phthalates leached from various medical supplies and associated exposures.
Collapse
Affiliation(s)
- Wei Wang
- Wadsworth Center, New York State Department
of Health, and Department of Environmental Health Sciences, School
of Public Health, State University of New
York at Albany, Empire
State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department
of Health, and Department of Environmental Health Sciences, School
of Public Health, State University of New
York at Albany, Empire
State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States
| |
Collapse
|
17
|
Nguyen AV, Van Vu T, Pham CLT, Nguyen VN, Ta NT, Hoang AQ, Minh TB, Tran TM. Widespread distribution of phthalic acid esters in indoor and ambient air samples collected from Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63175-63184. [PMID: 36959402 DOI: 10.1007/s11356-023-26558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
In the present study, distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 90 air samples collected from the urban areas in Hanoi, Vietnam from May to August 2022. The total concentrations of PAEs in indoor and ambient air samples were in the range of 320-4770 ng/m3 and 35.9-133 ng/m3, respectively. Total concentrations of PAEs in indoor air were about one order of magnitude higher than those in ambient air. Among PAEs studied, di-(2-ethyl)hexyl phthalate (DEHP) was measured at the highest levels in all air samples, followed by di-n-octyl phthalate (DnOP) and di-n-butyl phthalate (DnBP). The PAEs concentrations in air samples collected from laboratories at nighttime were significantly higher than those during daytime (p < 0.05). Meanwhile, the distributions of PAEs in various micro-environments in the same house are no statistically significant difference. The median exposure doses of PAEs through inhalation for adults and children were 248 and 725 ng/kg-bw/d, respectively. These exposure levels were still lower than the respective reference doses (RfD) proposed by the US EPA for selected compounds such as diethyl phthalate (DEP), DnBP, and DEHP.
Collapse
Affiliation(s)
- Anh Viet Nguyen
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Tu Van Vu
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Chi Linh Thi Pham
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Viet Ngoc Nguyen
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Nguyen Thuy Ta
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tu Binh Minh
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tri Manh Tran
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam.
| |
Collapse
|
18
|
Wang Y, Zhang Z, Xu Y, Rodgers TFM, Ablimit M, Li J, Tan F. Identifying the contributions of root and foliage gaseous/particle uptakes to indoor plants for phthalates, OPFRs and PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163644. [PMID: 37088388 DOI: 10.1016/j.scitotenv.2023.163644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Understanding the uptake pathways of organic chemicals in plants can help us use plants as biosentinels for human exposure, and as remediation tools for contaminated sites. Herein, we investigated the relative contributions of root and foliar (gas and particle) uptake pathways to indoor ornamental plants for phthalates (PAEs), organophosphorus flame retardants (OPFRs), and polycyclic aromatic hydrocarbons (PAHs). We looked at different kinds of indoor ornamental plants via pot and hydroponic control experiments, comparing the levels between their leaves and indoor air gaseous and particle phases, floor dust, and window film. Contributions of soil and foliage uptakes were calculated based on chemical concentrations in leaves of hydroponic and soil cultured plants and their mass uptake rates. Across all compounds, the contributions of root uptake to the chemicals in soil cultured plants ranged from 47.5 % to 88.5 %. We used binary first-order mass conservation equations to calculate the contributions of foliage uptake via gaseous and particle phases to the chemicals with similar Kow in plant leaves. Foliar uptake of PAEs occurred mainly via particle adsorption, for light PAHs via gaseous absorption, and for OPFRs via both particle and gaseous uptakes. Negative correlations between chemicals' foliage uptake ratios and their Kow and Koa values suggest that foliage uptake may be influenced by both chemical hydrophilicity and lipophilicity.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zihao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Timothy F M Rodgers
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Mukaddas Ablimit
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Junze Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Huo CY, Li WL, Liu LY, Sun Y, Guo JQ, Wang L, Hung H, Li YF. Seasonal variations of airborne phthalates and novel non-phthalate plasticizers in a test residence in cold regions: Effects of temperature, humidity, total suspended particulate matter, and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160852. [PMID: 36526181 DOI: 10.1016/j.scitotenv.2022.160852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a class of plasticizers widely used in consumer products, some phthalate esters (PAEs) have been restricted due to their adverse health effects and ubiquitous presence, leading to the introduction of alternative non-phthalates plasticizers (NPPs) to the market. However, few studies focus on the influence of environmental parameters on the presence of these plasticizers and the potential human health risks for people living in poorly ventilated indoor spaces in cold regions. We investigated the trends of PAEs and NPPs in air in a typical indoor residence in northern China for over one year. The air concentrations of PAEs were significantly higher than those of NPPs (p < 0.05), indicating that PAEs are still the dominant plasticizers currently being used in the studied residence. PAEs showed seasonal fluctuation patterns of the highest levels found in summer and autumn. The temperature and relative humidity dependence for most PAEs and NPPs decreased with decreasing vapor pressure. Concentrations of the high molecular weight NPPs and PAEs positively correlated with total suspended particles (TSP). It is worth noting that the peak concentrations of PAEs and NPPs were found when the haze occurred in autumn. Principal component analysis (PCA) suggested the diverse applications of PAEs and NPPs in the indoor environment. The hazard index (HI) values observed in this study were all below international guidelines (<1); however, the average carcinogenic risk (CR) values for some compounds exceeded acceptable levels (One in a million), which raised concerns about the possibility of carcinogenicity for people living indoors for long periods of time in cold regions.
Collapse
Affiliation(s)
- Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China; Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China.
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| |
Collapse
|
20
|
Zamora AN, Peterson KE, Téllez-Rojo MM, Song PXK, Meeker JD, Cantoral A, Goodrich JM, Dolinoy DC, Jansen EC. Urinary phthalates, phenols, and parabens in relation to sleep health markers among a cohort of Mexican adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160651. [PMID: 36473659 PMCID: PMC9880990 DOI: 10.1016/j.scitotenv.2022.160651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 05/12/2023]
Abstract
INTRODUCTION Emerging research has shed light on the potential impact of environmental toxicants on sleep health, however, it remains unclear if these associations exist during adolescence and whether associations differ by sex. This study aimed to examine associations between phthalates, parabens, and phenols on adolescent sleep health using cross-sectional data from 470 participants from the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study. MATERIAL AND METHODS In 2015, spot urine samples were analyzed for exposure biomarkers of 14 phthalate metabolites, seven phenol, and four paraben analytes. Over seven consecutive days, sleep duration, midpoint, and fragmentation were assessed with wrist-actigraphy. We examined associations between summary phthalates, individual phthalate metabolites, and phenol and paraben analytes with mean weekday sleep duration, midpoint, and fragmentation using linear regression models adjusted for specific-gravity and sex, age, pubertal status, smoking and alcohol behavior, physical activity, and screen time. RESULTS Mean (SD) age was 13.8 (2.1) years; 53.5 % were female. Σ Plastic - summary measure for toxicants from plastic sources - and Σ DEHP and its metabolites, were associated with longer sleep duration in the unstratified sample. To illustrate, every 1-unit log increase in Σ DEHP was associated with 7.7 min (95 % CI: 0.32, 15.1; p < 0.05) longer duration. Summary measures of toxicants from plastic sources, personal care products, anti-androgenic toxicants, and multiple individual phthalates, phenols, and parabens were associated with later midpoint. The midpoint associations were largely female-specific. There were no associations with sleep fragmentation. CONCLUSIONS Higher EDC exposure may be related to longer sleep duration and later sleep timing during adolescence, and associations may vary by toxicant and according to sex.
Collapse
Affiliation(s)
- Astrid N Zamora
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Peter X K Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Erica C Jansen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Neurology, Division of Sleep Medicine, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Zeng F, Zhang L, Deng F, Lou S. Early-life exposure to di (2-ethyl-hexyl) phthalate: Role in children with endocrine disorders. Front Cell Dev Biol 2023; 11:1115229. [PMID: 36846588 PMCID: PMC9950113 DOI: 10.3389/fcell.2023.1115229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP), one of endocrine-disrupting chemicals (EDCs), has widespread concern due to its serious health hazards. Exposure to DEHP in the early stage of life affects fetal metabolic and endocrine function, which even would cause genetic lesions. To date, it is widely believed that the increasing incidence of childhood obesity and diabetes in adolescents is related to the impact of DEHP on glucose and lipid homeostasis in children. However, there remains a knowledge gap to recognize these adverse effects. Thus, in this review, besides the exposure routes and levels of DEHP, we further outline the effects of early-life exposure to DEHP on children and potential mechanisms, focusing on the aspect of metabolic and endocrine homeostasis.
Collapse
Affiliation(s)
- Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Luodan Zhang
- Department of Nephrology, Anhui Provincial Children’s Hospital, Children’s Hospital of Anhui Medical University, Hefei, China
| | - Fang Deng
- Department of Nephrology, Anhui Provincial Children’s Hospital, Children’s Hospital of Anhui Medical University, Hefei, China,*Correspondence: Fang Deng, ; Shuiping Lou,
| | - Shuiping Lou
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China,*Correspondence: Fang Deng, ; Shuiping Lou,
| |
Collapse
|
22
|
Cao J, Shi Y, Yan M, Zhu H, Chen S, Xu K, Wang L, Sun H. Face Mask: As a Source or Protector of Human Exposure to Microplastics and Phthalate Plasticizers? TOXICS 2023; 11:87. [PMID: 36850963 PMCID: PMC9967050 DOI: 10.3390/toxics11020087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Wearing masks has become the norm during the Coronavirus disease pandemic. Masks can reportedly interface with air pollutants and release microplastics and plastic additives such as phthalates. In this study, an experimental device was set up to simulate the impact of five kinds of masks (activated-carbon, N95, surgical, cotton, and fashion masks) on the risk of humans inhaling microplastics and phthalates during wearing. The residual concentrations of seven major phthalates ranged from 296 to 72,049 ng/g (median: 1242 ng/g), with the lowest and the highest concentrations detected in surgical (median: 367 ng/g) and fashion masks (median: 37,386 ng/g), respectively. During the whole inhalation simulation process, fragmented and 20-100 μm microplastics accounted for the largest, with a rapid release during the first six hours. After one day's wearing, that of 6 h, while wearing different masks, 25-135 and 65-298 microplastics were inhaled indoors and outdoors, respectively. The total estimated daily intake of phthalates with indoor and outdoor conditions by inhalation and skin exposure ranged from 1.2 to 13 and 0.43 to 14 ng/kg bw/d, respectively. Overall, surgical masks yield a protective effect, while cotton and fashion masks increase human exposure to microplastics and phthalates both indoors and outdoors compared to no mask wearing. This study observed possible risks from common facemasks and provided suggestions to consumers for selecting suitable masks to reduce exposure risks from microplastics and phthalate acid.
Collapse
|
23
|
Biodegradation of diethyl phthalate and phthalic acid by a new indigenous Pseudomonas putida. Folia Microbiol (Praha) 2023; 68:477-488. [PMID: 36635520 DOI: 10.1007/s12223-022-01022-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/30/2022] [Indexed: 01/14/2023]
Abstract
Diethyl phthalate (DEP) is one of the extensively used plasticizers which has been considered a priority hazardous pollutant due to its carcinogenic, endocrine disrupter, and multi-toxic effects on humans. The identification of DEP in different parts of the ecosphere has increased the global community's attention to the elimination of this pollutant in a bio-eco-friendly way. In this research, a novel aerobic bacterial strain nominates as ShA (GenBank accession number: MN298858) capable of consuming DEP as carbon and energy sources, was isolated from the upper phase (0-10 cm) of Anzali international wetland sediments by enrichment culture method. Morphological characteristics and 16S rRNA gene sequence analysis demonstrated that strain ShA belonged to Pseudomonas putida. The substrate utilization test demonstrated that strain ShA was able to grow in mineral salt medium containing dimethyl phthalate (DMP) and phthalic acid (PA) isomers including terephthalic and isophthalic acid. Degradation assay showed strain ShA completely degraded 200 mg/L DEP within 22 h (pH 7.0, 30 °C). Surprisingly, PA as the main intermediate of DEP biodegradation was identified by GC-FID. Moreover, the rapid degradation of 2000 mg/L PA to CO2 and H2O was viewed in 22 h by strain ShA. The possible route of DEP degradation was DEP directly to PA and then PA consumption for growth. This study obtained results that provide a great contribution to applying strain ShA in the biodegradation of low molecular weight of PAEs and PA isomers in natural ecosystems. This is the first report of a P. putida strain able to degrade DEP and PA.
Collapse
|
24
|
Dodson R, Manz KE, Burks SR, Gairola R, Lee NF, Liu Y, Pennell KD, Walker ED, Braun JM. Does Using Corsi-Rosenthal Boxes to Mitigate COVID-19 Transmission Also Reduce Indoor Air Concentrations of PFAS and Phthalates? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:415-427. [PMID: 36562547 PMCID: PMC9876422 DOI: 10.1021/acs.est.2c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic brought new emphasis on indoor air quality. However, few studies have investigated the impact of air filtration, a COVID-mitigation approach, on indoor air concentrations of semivolatile organic compounds (SVOCs). Using a quasi-experimental design, we quantified the impact of a relatively low-cost "do-it-yourself" air filter (Corsi-Rosenthal Box; CR Box) on indoor air concentrations of 42 PFAS and 24 other SVOCs. We sampled air before (October-November 2021) and during (February-March 2022) deployment of CR Boxes in 17 rooms located in an occupied Providence, Rhode Island office building. We measured sound levels in rooms with CR Boxes operating and not operating. While CR Boxes were deployed, concentrations of seven PFAS (N-EtFOSE, N-EtFOSA, FBSA, PFBS, PFHxS, PFOS, PFNA) were 28-61% lower and concentrations of five phthalates (DMP, DEP, DiBP, BBzP, DCHP) were 29-62% lower. Concentrations of five PFAS and one phthalate increased 23-44% during the intervention period, but the 95% CI of most of these estimates included the null. Daytime sound levels increased 5.0 dB when CR Boxes were operating. These results indicate that CR Boxes reduced exposure to several lower-volatility phthalates and sulfonated PFAS previously reported to be found in office building materials and products, with potentially distracting increases in sound levels.
Collapse
Affiliation(s)
- Robin
E. Dodson
- Silent
Spring Institute, Newton, Massachusetts02460, United States
| | - Katherine E. Manz
- School
of Engineering, Brown University, Providence, Rhode Island02912, United States
| | - Shaunessey R. Burks
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Richa Gairola
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Nina F. Lee
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Yun Liu
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island02912, United States
| | - Erica D. Walker
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Joseph M. Braun
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| |
Collapse
|
25
|
Chang CL, Chen HT, Chen CY, Chen EY, Lin KT, Jung CC. Gas-phase and PM 2.5-bound phthalates in nail salons: characteristics, exposure via inhalation, and influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6146-6158. [PMID: 35987852 DOI: 10.1007/s11356-022-22606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the characteristics of, exposure to, and factors influencing gas-phase and PM2.5-bound phthalates (PAEs) in nail salons. Data on both indoor and outdoor gas-phase and PM2.5-bound PAEs, carbon dioxide (CO2), temperature, and relative humidity were collected in nail salons. We also used questionnaires to survey building characteristics and occupants' behaviors. The average total gas-phase and PM2.5-bound PAE concentrations indoors were higher than those outdoors by 6 and 3 times, respectively. Diethyl phthalate, diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and di-(2-ethylhexyl) phthalate (DEHP) were the predominant compounds among both the gas-phase and PM2.5-bound PAEs in indoor air. The volume of the salon's space or the difference of indoor and outdoor CO2 concentrations (dCO2) was significantly associated with indoor PAE concentrations. The ratios of PM2.5-bound to gas-phase PAEs, especially high-molecular-weight PAEs, were positively associated with the dCO2 concentrations. Higher ratios of indoor to outdoor PM2.5-bound DiBP, DnBP, and DEHP concentrations were discovered when more clients visited each day. Building characteristics, ventilation conditions, and occupants' activities have influences on the gas-phase and particle-phase PAEs. The study identifies the characteristics of gas-phase and PM2.5-bound PAEs in nail salons and their influencing factors.
Collapse
Affiliation(s)
- Chia-Ling Chang
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan City, Taiwan
| | - Hui-Tzu Chen
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan City, Taiwan
| | - Chung-Yu Chen
- Department of Occupational Safety and Health, School of Safety and Health Science, Chang Jung Christian University, Tainan City, Taiwan
- Occupational Environment and Food Safety Research Center, Chang Jung Christian University, Tainan City, Taiwan
| | - En-Yu Chen
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan
| | - Kuan-Ting Lin
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan
| | - Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan.
| |
Collapse
|
26
|
Hua L, Guo S, Xu J, Yang X, Zhu H, Yao Y, Zhu L, Li Y, Zhang J, Sun H, Zhao H. Phthalates in dormitory dust and human urine: A study of exposure characteristics and risk assessments of university students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157251. [PMID: 35817099 DOI: 10.1016/j.scitotenv.2022.157251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate diesters (PAEs) are prevalent and potentially toxic to human health. The university dormitory represents a typical and relatively uniform indoor environment. This study evaluated the concentrations of phthalate monoesters (mPAEs) in urine samples from 101 residents of university status, and the concentrations of PAEs in dust collected from 36 corresponding dormitories. Di-(2-ethylhexyl) phthalate (DEHP, median: 68.0 μg/g) was the major PAE in dust, and mono-ethyl phthalate (47.9 %) was the most abundant mPAE in urine. The levels of both PAEs in dormitory dust and mPAEs in urine were higher in females than in males, indicating higher PAE exposure in females. Differences in lifestyles (dormitory time and plastic product use frequency) may also affect human exposure to PAEs. Moreover, there were significant positive correlations between the estimated daily intakes of PAEs calculated by using concentrations of PAEs in dust (EDID) and mPAEs in urine (EDIU), suggesting that PAEs in dust could be a significant source of human exposure to PAEs. The value of EDID/EDIU for low molecular weight PAEs (3-6 carbon atoms in their backbone) was lower than that of high molecular weight PAEs. The contribution rate of various pathways to PAE exposure illustrated that non-dietary ingestion (87.8 %) was the major pathway of human exposure to PAEs in dust. Approximately 4.95 % of university students' hazard quotients of DEHP were >1, indicating that there may be some health risks associated with DEHP exposure among PAEs. Furthermore, it is recommended that some measures be taken to reduce the production and application of DEHP.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaping Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomeng Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
27
|
Han I, Seo JY, Barr DB, Panuwet P, Yakimavets V, D’Souza PE, An-Han H, Afshar M, Chao YY. Evaluating Indoor Air Phthalates and Volatile Organic Compounds in Nail Salons in the Greater New York City Area: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12411. [PMID: 36231706 PMCID: PMC9566193 DOI: 10.3390/ijerph191912411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The Greater New York City area ranks highest in the United States in the number of nail salon technicians, primarily Asian immigrant women. Nail salon technicians are exposed to toxic phthalates and volatile organic compounds daily in nail salons. The purpose of this pilot study was to measure a mixture of phthalates and volatile organic compounds in nail salons in the Greater New York City area, and to characterize work-related determinants of indoor air quality in these nail salons. Working with four Asian nail salon organizations in the Greater New York City area, we measured indoor air phthalates and volatile organic compounds at 20 nail salons from February to May 2021 using silicone wristbands and passive samplers, respectively. Nail salon characteristics were also examined. We measured six phthalates and 31 volatile organic compounds. Di(2-ethylhexyl) phthalate and Diethyl phthalate had the highest concentrations among the six phthalates measured. Concentrations of toluene, d-limonene, methyl methacrylate, and ethyl methacrylate were higher than that of the rest. Manicure/pedicure tables, the number of customers per day, and application of artificial nail (acrylic) services were positively associated with the levels of phthalates and volatile organic compounds. Given the large number of people employed in the nail industry and the even larger number of customers visiting such establishments, exposures to these toxic chemicals are likely to be widespread.
Collapse
Affiliation(s)
- Inkyu Han
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA 19122, USA
| | - Jin Young Seo
- Hunter College School of Nursing, The City University of New York, New York, NY 10010, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Priya Esilda D’Souza
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Heyreoun An-Han
- Gulf Coast Center for Precision Environmental Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masoud Afshar
- Department of Epidemiology, Human Genetics, and Environmental Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ying-Yu Chao
- School of Nursing, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| |
Collapse
|
28
|
Masi M, Maddalon A, Iulini M, Linciano P, Galbiati V, Marinovich M, Racchi M, Corsini E, Buoso E. Effects of endocrine disrupting chemicals on the expression of RACK1 and LPS-induced THP-1 cell activation. Toxicology 2022; 480:153321. [PMID: 36113621 DOI: 10.1016/j.tox.2022.153321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
The existence of a complex hormonal balance among glucocorticoids, androgens and estrogens involved in the regulation of Receptor for Activated C Kinase 1 (RACK1) expression and its related immune cells activation, highlights the possibility to employ this protein as screening tool for the evaluation of the immunotoxic profile of endocrine disrupting chemicals (EDCs), hormone-active substances capable of interfering with the physiologic hormonal signaling. Hence, the aim of this work was to investigate the effect of the exposure of EDCS 17α-ethynylestradiol (EE), diethyl phthalate (DEP) and perfluorooctanesulfonic acid (PFOS) on RACK1 expression and on lipopolysaccharide (LPS)-induced activation of the human monocytic cell line THP-1, a validated model for this investigation. In line with our previous results with estrogen-active compounds, EE treatment significantly induced RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which paralleled an increase in LPS-induced IL-8, TNF-α production and CD86 expression, previously demonstrated to be dependent on RACK1/PKCβ activation. EE mediates its effect on RACK1 expression through G-protein-coupled estrogen receptor (GPER) and androgen receptor (AR) ligand-independent cascade, as also suggested by in silico molecular docking simulation. Conversely, DEP and PFOS induced a dose-dependent downregulation of RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which was mirrored by a reduction of IL-8, TNF-α production and CD86 expression. Mifepristone pre-treatments abolish DEP and PFOS effects, confirming their GR agonist profile, also corroborated by molecular docking. Altogether, our data confirm that RACK1 represents an interesting target of steroid active compounds, which expression offers the opportunity to screen the immunotoxic potential of different hormone-active substances of concerns due to their human exposure and environmental persistence.
Collapse
Affiliation(s)
- Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Pasquale Linciano
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
29
|
Cecinato A, Bacaloni A, Romagnoli P, Perilli M, Balducci C. Molecular signatures of organic particulates as tracers of emission sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65904-65923. [PMID: 35876994 PMCID: PMC9492597 DOI: 10.1007/s11356-022-21531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chemical signature of airborne particulates and deposition dusts is subject of study since decades. Usually, three complementary composition markers are investigated, namely, (i) specific organic compounds; (ii) concentration ratios between congeners, and (iii) percent distributions of homologs. Due to its intrinsic limits (e.g., variability depending on decomposition and gas/particle equilibrium), the identification of pollution sources based on molecular signatures results overall restricted to qualitative purposes. Nevertheless, chemical fingerprints allow drawing preliminary information, suitable for successfully approaching multivariate analysis and valuing the relative importance of sources. Here, the state-of-the-art is presented about the molecular fingerprints of non-polar aliphatic, polyaromatic (PAHs, nitro-PAHs), and polar (fatty acids, organic halides, polysaccharides) compounds in emissions. Special concern was addressed to alkenes and alkanes with carbon numbers ranging from 12 to 23 and ≥ 24, which displayed distinct relative abundances in petrol-derived spills and exhausts, emissions from microorganisms, high vegetation, and sediments. Long-chain alkanes associated with tobacco smoke were characterized by a peculiar iso/anteiso/normal homolog fingerprint and by n-hentriacontane percentages higher than elsewhere. Several concentration ratios of PAHs were identified as diagnostic of the type of emission, and the sources of uncertainty were elucidated. Despite extensive investigations conducted so far, the origin of uncommon molecular fingerprints, e.g., alkane/alkene relationships in deposition dusts and airborne particles, remains quite unclear. Polar organics resulted scarcely investigated for pollution apportioning purposes, though they looked as indicative of the nature of sources. Finally, the role of humans and living organisms as actual emitters of chemicals seems to need concern in the future.
Collapse
Affiliation(s)
- Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015 Monterotondo, RM Italy
- Dept. of Chemistry, University Roma-1 “Sapienza”, Rome, Italy
| | | | - Paola Romagnoli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015 Monterotondo, RM Italy
| | - Mattia Perilli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015 Monterotondo, RM Italy
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015 Monterotondo, RM Italy
| |
Collapse
|
30
|
Shao Y, Song C, Yue Z, Peng S, Zhao W, Zhang W, Zhang S, Ouyang G. Rapid sampling and determination of phthalate esters in indoor air using needle trap device. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Parikh FR, Uttamchandani S, Naik N, Panpalia M, Sanap M, Kulkarni D, Sinkar P, Khandare P, Makwana P, Gawas S, Pandole A, Parikh R. Significant changes in follicular fluid phthalate metabolite levels reflect the lifestyle changes brought about by the strict COVID-19 lockdown in India. F&S SCIENCE 2022; 3:237-245. [PMID: 35691586 PMCID: PMC9181629 DOI: 10.1016/j.xfss.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess if the unprecedented changes in lifestyle because of the lockdown initiated by the COVID-19 pandemic, which altered human behavior, and influenced purchase and consumption patterns, may have had an impact on the exposure to phthalates in Indian women undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). To evaluate if the effects of the strict and lengthy lockdown in India, which promoted the new norms of stay-at-home and work-from-home, closure of beauty parlors, and restriction on public gatherings, may have contributed to a decrease in the exposure to phthalates like dibutyl phthalate and diethyl phthalate. These chemicals are found in many personal care products (PCPs) which include cosmetics and fragrances. To investigate if the extensive use of flexible single-use plastic in personal protective equipment like face masks/gloves and in plastic packaging used for online purchases, food takeaways, and home deliveries of essentials and groceries during the COVID-19 pandemic, in an attempt to provide a contact-free delivery system may have inadvertently led to an increase in exposure to phthalates like di(2-ethylhexyl) phthalate, di-isononyl phthalate, and di-isodecyl phthalate which are plasticizers used in manufacturing flexible plastic. DESIGN A comparative study of the levels of six phthalate metabolites detected in follicular fluid (FF) of Indian women undergoing IVF/ICSI 1 year before and immediately after the lockdown initiated by the COVID-19 pandemic. SETTING In vitro fertilization center in a large referral hospital in India. PATIENT(S) A total of 176 Indian women seeking treatment for infertility and undergoing oocyte retrieval were included after obtaining consent. Each woman contributed one FF sample to the study. Group A (n = 96) women (mean age, 34.0 [±3.9] years, and mean BMI, 25.4 [±4.8]) had their FF samples collected and screened between January 2019 and mid-March 2020, 1 year before the lockdown. Group B (n = 80) women (mean age, 33.9 [±4.1] years, and mean BMI, 25.0 [±4.4]) had their FF collected and screened post the lockdown between October 2020 and June 2021. Both groups were matched by age and BMI. INTERVENTION(S) The cryopreserved FF samples of 176 women were processed using enzymatic deconjugation as well as the solid-phase extraction technique, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect the total levels of six phthalate metabolites. MAIN OUTCOME MEASURE(S) To evaluate the impact of the COVID-19 lockdown on the change in the phthalate metabolite levels in the FF of Indian women undergoing IVF/ICSI pre and post the lockdown. RESULT(S) The median levels of mono-n-butyl phthalate (1.64 ng/ml in group A vs. 0.93 ng/ml in group B; P<.001) and mono-ethyl phthalate (5.25 ng/ml in group A vs. 3.24 ng/ml in group B; P<.001) metabolites of dibutyl phthalate and diethyl phthalate found in PCPs including cosmetics and fragrances were significantly higher in the FF of 96 women (group A) compared with the levels seen in the FF of 80 women (group B). However, the median levels of mono-isononyl phthalate (0.11ng/ml in group A vs. 0.13 ng/ml in group B; P<.001), mono-isodecyl phthalate (0.11 ng/ml in group A vs. 0.14 ng/ml in group B; P<.001), and mono(2-ethyl-5-oxohexyl) phthalate (0.13 ng/ml in group A vs. 0.14 ng/ml in group B; P=.023) metabolites of di-isononyl phthalate, di-isodecyl phthalate, and di(2-ethylhexyl) phthalate used as plasticizers were significantly higher in the FF of women in group B compared with women in group A. CONCLUSION(S) The significant drop in mono-n-butyl phthalate and mono-ethyl phthalate levels, accumulated in the FF of 80 Indian women in group B reflects a decrease or absence of usage patterns of PCPs, including cosmetics and fragrances, thereby suggesting that these women may have deprioritized their use during the COVID-19 pandemic giving preference to personal hygiene and safety. Whereas the unprecedented increase in the use of flexible single-use plastic that became our first line of defense against the coronavirus during the COVID-19 pandemic might be responsible for the accumulation of significantly higher levels of mono-isononyl phthalate, mono-isodecyl phthalate, and mono(2-ethyl-5-oxohexyl) phthalate in FF of the same group.
Collapse
Affiliation(s)
- Firuza Rajesh Parikh
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India.
| | - Shonali Uttamchandani
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | - Nandkishor Naik
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | - Madhavi Panpalia
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | - Mangesh Sanap
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | - Dhananjaya Kulkarni
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | | | - Pratiksha Khandare
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | - Prashant Makwana
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | - Smita Gawas
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | - Anahita Pandole
- Jaslok-FertilTree International Fertility Centre, Department of Assisted Reproduction & Genetics. Jaslok Hospital and Research Centre, Mumbai, India
| | - Rajesh Parikh
- Department of Neuropsychiatry, Jaslok Hospital and Research Centre, Mumbai, India
| |
Collapse
|
32
|
Lin EZ, Nichols A, Zhou Y, Koelmel JP, Godri Pollitt KJ. Characterizing the external exposome using passive samplers-comparative assessment of chemical exposures using different wearable form factors. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022:10.1038/s41370-022-00456-3. [PMID: 35840784 DOI: 10.1038/s41370-022-00456-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Organic contaminants are released into the air from building materials/furnishings, personal care, and household products. Wearable passive samplers have emerged as tools to characterize personal chemical exposures. The optimal placement of these samplers on an individual to best capture airborne exposures has yet to be evaluated. OBJECTIVE To compare personal exposure to airborne contaminants detected using wearable passive air samplers placed at different positions on the body. METHODS Participants (n = 32) simultaneously wore four passive Fresh Air samplers, on their head, chest, wrist, and foot for 24 hours. Exposure to 56 airborne organic contaminants was evaluated using thermal desorption gas chromatography high resolution mass spectrometry with a targeted data analysis approach. RESULTS Distinct exposure patterns were detected by samplers positioned on different parts of the body. Chest and wrist samplers were the most similar with correlations identified for 20% of chemical exposures (Spearman's Rho > 0.8, p < 0.05). In contrast, the greatest differences were found for head and foot samplers with the weakest correlations across evaluated exposures (8% compounds, Spearman's Rho > 0.8, p < 0.05). SIGNIFICANCE The placement of wearable passive air samplers influences the exposures captured and should be considered in future exposure and epidemiological studies. IMPACT STATEMENT Traditional approaches for assessing personal exposure to airborne contaminants with active samplers presents challenges due to their cost, size, and weight. Wearable passive samplers have recently emerged as a non-invasive, lower cost tool for measuring environmental exposures. While these samplers can be worn on different parts of the body, their position can influence the type of exposure that is captured. This study comprehensively evaluates the exposure to airborne chemical contaminants measured at different passive sampler positions worn on the head, chest, wrist, and foot. Findings provide guidance on sampler placement based on chemicals and emission sources of interest.
Collapse
Affiliation(s)
- Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Amy Nichols
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Yakun Zhou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
33
|
Olkowska E, Gržinić G. Skin models for dermal exposure assessment of phthalates. CHEMOSPHERE 2022; 295:133909. [PMID: 35143861 DOI: 10.1016/j.chemosphere.2022.133909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are a class of compounds that have found widespread use in industrial applications, in particular in the polymer, cosmetics and pharmaceutical industries. While ingestion, and to a lesser degree inhalation, have been considered as the major exposure routes, especially for higher molecular weight phthalates, dermal exposure is an important route for lower weight phthalates such as diethyl phthalate (DEP). Assessing the dermal permeability of such compounds is of great importance for evaluating the impact and toxicity of such compounds in humans. While human skin is still the best model for studying dermal permeation, availability, cost and ethical concerns may preclude or restrict its use. A range of alternative models has been developed over time to substitute for human skin, especially in the early phases of research. These include ex vivo animal skin, human reconstructed skin and artificial skin models. While the results obtained using such alternative models correlate to a lesser or greater degree with those from in vivo human studies, the use of such models is nevertheless vital in dermal permeation research. This review discusses the alternative skin models that are available, their use in phthalate permeation studies and possible new avenues of phthalate research using skin models that have not been used so far.
Collapse
Affiliation(s)
- Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland.
| | - Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland
| |
Collapse
|
34
|
Nguyen LV, Diamond ML, Kalenge S, Kirkham TL, Holness DL, Arrandale VH. Occupational Exposure of Canadian Nail Salon Workers to Plasticizers Including Phthalates and Organophosphate Esters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3193-3203. [PMID: 35156803 DOI: 10.1021/acs.est.1c04974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Personal exposure of nail salon workers to 10 phthalates and 19 organophosphate esters (OPEs) was assessed in 18 nail salons in Toronto, Canada. Active air samplers (n = 60) and silicone passive samplers, including brooches (n = 58) and wristbands (n = 60), were worn by 45 nail salon workers for ∼8 working hours. Diethyl phthalate (median = 471 ng m-3) and diisobutyl phthalate (337 ng m-3) were highest in active air samplers. Most abundant OPEs in active air samplers were tris(2-chloroisopropyl)phosphate or TCIPP (303 ng m-3) and tris(2-chloroethyl)phosphate or TCEP (139 ng m-3), which are used as flame retardants but have not been reported for use in personal care products or nail salon accessories. Air concentrations of phthalates and OPEs were not associated with the number of services performed during each worker's shift. Within a single work shift, a combined total of 16 (55%) phthalates and OPEs were detected on passive silicone brooches; 19 (66%) were detected on wristbands. Levels of tris(2-chloroisopropyl)phosphate, tris(1,3-dichloro-2-propyl)phosphate or TDCIPP, and triphenyl phosphate or TPhP wristbands were significantly higher than those worn by e-waste workers. Significant correlations (p < 0.05) were found between the levels of some phthalates and OPEs in silicone brooches and wristbands versus those in active air samplers. Stronger correlations were observed between active air samplers versus brooches than wristbands. Sampler characteristics, personal characteristics, and chemical emission sources are the three main factors proposed to influence the use of passive samplers for measuring semi-volatile organic compound exposure.
Collapse
Affiliation(s)
- Linh V Nguyen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
| | - Sheila Kalenge
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario M5G 1X3, Canada
| | - Tracy L Kirkham
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario M5G 1X3, Canada
| | - D Linn Holness
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
- Division of Occupational Medicine, Department of Medicine and the Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Victoria H Arrandale
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario M5G 1X3, Canada
| |
Collapse
|
35
|
Huo Y, An Z, Li M, Sun J, Jiang J, Zhou Y, He M. The reaction laws and toxicity effects of phthalate acid esters (PAEs) ozonation degradation on the troposphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118692. [PMID: 34921942 DOI: 10.1016/j.envpol.2021.118692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Low-molecular-weight (LMW) phthalate acid esters (PAEs) tend to enter the atmosphere, flying for several kilometers, so it is easy to endanger human health. This work is the first to use quantum chemistry calculations (Gaussian 16 program) and computational toxicology (ECOSAR, TEST, and Toxtree software) to comprehensively study the ozonolysis mechanism of six LMW PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), diisopropyl phthalate (DIP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP)) in the atmosphere and the toxicity of DMP (take DMP as an example) in the conversion process. The results show that the electron-donating effect of the ortho position of the LMW PAEs has the most obvious influence on the ozonolysis. We summarized the ozonation reaction law of LMW PAEs at the optimal reaction site. At 298 K, the law of initial ozonolysis total rate constant of the LMW PAEs is kDIP > kDPP > kDIBP > kDMP > kDEP > kDBP, and the range is 9.56 × 10-25 cm3 molecule-1 s-1 - 1.47 × 10-22 cm3 molecule-1 s-1. According to the results of toxicity assessment, the toxicity of products is lower than DMP for aquatic organisms after ozonolysis. But those products have mutagenicity, developmental toxicity, non-genotoxicity, carcinogenicity, and corrosiveness to the skin. The proposed ozonolysis mechanism promotes our understanding of the environmental risks of PAEs and provides new ideas for studying the degradation of PAEs in the tropospheric gas phase.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jianfei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
36
|
Bisphenol and Phthalate Migration Test from Mexican Meat Packaging Using HPLC-DAD Technique. J CHEM-NY 2022. [DOI: 10.1155/2022/2688236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this work was to analyze the bisphenols’ and phthalates’ (PAEs) migration from meat packages (of sausages, Winnies, and ham found in Mexican markets) to a water simulant. The determination of these compounds was realized by high performance liquid chromatography (HPLC) and diode array detection (DAD) at a wavelength of 254 nm. The mobile phase utilized was a mixture of acetonitrile:H2O (70 : 30). Elution was performed isocratically at a temperature of 25°C and at a flow rate of 1 mL min−1. The LOQs obtained for BPA, DEP, BADGE, DBP, BisDMA, DHP, DOP, and PA in µg mL−1 were 0.53, 2.09, 0.85, 1.45, 5.81, 1.03, 3.12, and 29.6, respectively. Calibration curves exhibited an adequate determination coefficient for all compounds (R2 >0.999). Excellent accuracy and precision in measurements (% RSD) were achieved. The recovery study showed good applicability of the method (percentage recovery 80% to 106%). The BPA, BADGE, DBP, and DOP concentrations found in samples exceeded the simulant migration limits (SMLs) established by the European Union. The contribution of the current investigation was to provide information related to the presence of bisphenols and PAEs in the package of meat products, highlighting the health risks associated with their exposure.
Collapse
|
37
|
Palacios-Arreola MI, De Vizcaya-Ruiz A, Morales-Montor J, Amador-Muñoz O. Toxicokinetic assessment of inhalatory absorption of Diisobutyl phthalate (DiBP) using a novel thermal desorption-GC-MS method to determine phthalate diesters in blood plasma. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103813. [PMID: 35033683 DOI: 10.1016/j.etap.2022.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are endocrine disrupting compounds that have been found in outdoor and indoor air. However, little is known about their inhalatory absorption. Although measurement of urinary metabolites is the current standard, complex and convergent metabolism of phthalates poses the necessity for alternative methodologies such as the quantitation of parental compounds in plasma. We determined the inhalatory absorption of Diisobutyl phthalate (DiBP) using a novel method based on a thermal desorption probe (TSP)-gas chromatography-mass spectrometry developed for the detection and quantitation of nine phthalate diesters in blood plasma, which fulfilled the acceptance criteria suggested by FDA guidelines regarding specificity, matrix effect, recovery, linearity, sensitivity, accuracy, and precision. After inhalation, plasma concentration of DiBP exhibited two peaks, suggesting a first, rapid absorption event, followed by a second, delayed one and a first order elimination stage. Half-life was calculated as 62 min and bioavailability, compared to IV route, was 15%.
Collapse
Affiliation(s)
- M I Palacios-Arreola
- Atmospheric Organic Aerosol Chemical Speciation Group, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, AP 70228, Ciudad de México 04510, México
| | - A De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México 07360, México
| | - J Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - O Amador-Muñoz
- Atmospheric Organic Aerosol Chemical Speciation Group, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, AP 70228, Ciudad de México 04510, México.
| |
Collapse
|
38
|
Wan Y, Diamond ML, Siegel JA. Quantitative filter forensics for semivolatile organic compounds in social housing apartments. INDOOR AIR 2022; 32:e12994. [PMID: 35225385 DOI: 10.1111/ina.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Residents from low-income social housing are vulnerable to adverse health effects from indoor air pollution. Particle-bound concentrations of eight phthalates and 12 polycyclic aromatic hydrocarbons (PAHs) in indoor air were measured using quantitative filter forensics with portable air cleaners deployed for three one-week periods from 2015 to 2017. The sample included 143 apartments across seven multi-unit social housing buildings in Toronto, Canada, that went through energy retrofits in 2016. Eight phthalates and six PAHs were found in more than 50% of the apartments in either of the three sampling periods. Di(2-ethylhexyl) phthalate (DEHP) and phenanthrene were the dominant phthalate and PAH, with median concentrations of 146, 143, and 130 ng/m3 and 1.51, 0.58, and 0.76 ng/m3 in the late spring of 2015, and after retrofits in late spring 2017 and winter of 2017, respectively. SVOC concentrations were generally lower after energy retrofits, with significant differences for phenanthrene, fluoranthene, and pyrene. Lower concentrations post-retrofit may be related to less overheating and less need for opening windows. Concentrations of phthalates and PAHs in this study were similar to or higher than those reported in the literature. Results suggest that the use of portable air filters is a promising method to assess concentrations of indoor particle-bound SVOCs.
Collapse
Affiliation(s)
- Yuchao Wan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
- School of Environment, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey A Siegel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Hoang AQ, Le TM, Nguyen HMN, Le HQ, Vu ND, Chu NC, Dang GHM, Minh TB, Takahashi S, Tran TM. Phthalic acid esters (PAEs) in workplace and house dust from Vietnam: concentrations, profiles, emission sources, and exposure risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14046-14057. [PMID: 34601679 DOI: 10.1007/s11356-021-16851-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of nine phthalic acid esters (PAEs) were determined in indoor dust samples collected from vehicle repair shops, waste processing workshops, and homes in Vietnam. Concentrations of total PAEs ranged from 585 to 153,000 (median 33,400 ng/g), which fall in the lower end of global range. The PAE levels in workplace dust (median 49,100; range 9210-153,000 ng/g) were significantly higher than those in house dust (median 23,700; range 585-83,700 ng/g), indicating waste processing activities as potential PAE sources. The most predominant compound was di-(2-ethyl)hexyl phthalate (DEHP), accounting for 62 ± 18% of total PAEs. Other major compounds were benzyl butyl phthalate (BzBP) (10 ± 12%), di-n-butyl phthalate (DnBP) (9.7 ± 7.7%), di-n-octyl phthalate (DnOP) (7.9 ± 8.1%), and diisobutyl phthalate (DiBP) (6.9 ± 5.0%). Proportions of BzBP and DnBP in some workplace dust samples were markedly greater than in common house dust, suggesting specific emission sources. Daily intake doses of selected PAEs (e.g., DnBP, DiBP, BzBP, and DEHP) through dust ingestion were much lower than reference doses, implying acceptable levels of risk.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, 11000, Hanoi, Vietnam
- Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, 11000, Hanoi, Vietnam
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 11300, Vietnam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, 11000, Hanoi, Vietnam
- Ha Tinh University, Cam Vinh Commune, Cam Xuyen District, Ha Tinh, 45000, Vietnam
| | - Huong Quang Le
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 11300, Vietnam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 11300, Vietnam
| | - Ngoc Chau Chu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, 11000, Hanoi, Vietnam
| | - Giang Huong Minh Dang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, 11000, Hanoi, Vietnam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, 11000, Hanoi, Vietnam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, 11000, Hanoi, Vietnam.
| |
Collapse
|
40
|
Tuan Tran H, Lin C, Bui XT, Ky Nguyen M, Dan Thanh Cao N, Mukhtar H, Giang Hoang H, Varjani S, Hao Ngo H, Nghiem LD. Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. BIORESOURCE TECHNOLOGY 2022; 344:126249. [PMID: 34732372 DOI: 10.1016/j.biortech.2021.126249] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are well-known emerging contaminants that harm human health and the environment. Therefore, this review aims to discuss about the occurrence, fate, and phthalates concentration in the various environmental matrices (e.g., aquatic, sediment, soil, and sewage sludge). Hence, it is necessary to treat sources containing phthalates before discharging them to aqueous environment. Various advanced wastewater treatments including adsorption process (e.g., biochar, activated carbon), advanced oxidation processes (e.g., photo-fenton, ozonation, photocatalysis), and biological treatment (membrane bioreactor) have been successfully to address this issue with high removal efficiencies (70-95%). Also, the degradation mechanism was discussed to provide a comprehensive understanding of the phthalate removal for the reader. Additionally, key factors that influenced the phthalates removal efficiency of these technologies were identified and summarized with a view towards pilot-scale and industrial applications.
Collapse
Affiliation(s)
- Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Minh Ky Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ngoc Dan Thanh Cao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hong Giang Hoang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, 15 Broadway, Ultimo, NWS 2007, Australia
| | - Long D Nghiem
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, 15 Broadway, Ultimo, NWS 2007, Australia
| |
Collapse
|
41
|
Hong Y, Chen CY, Wu CC, Bao LJ, Zeng EY. A Novel Personal Passive Sampler for Collecting Gaseous Phthalates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15961-15968. [PMID: 34793136 DOI: 10.1021/acs.est.1c06611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dermal absorption of gaseous chemicals is an important contributor to increased health risk and has yet to be adequately addressed due to the lack of available sampling techniques. In the present study, a novel personal passive sampler consisting of a housing (embracing a polydimethylsiloxane (PDMS) disk as the sorbent phase, a membrane filter, and a stainless-steel mesh) and a watchband (traditional wristband) was constructed and used to characterize gaseous phthalates (PAEs) near the air-skin interface. In a real-life setting, the utility of the passive sampler was validated by comparing the composition profiles of PAEs in the PDMS disks and in active samples and watchbands. The compositions of PAEs were consistent in disks and gaseous constituents from ambient air, with low-molecular-weight (<306 g mol-1) PAEs accounting for 87-100% and approximately 100%, respectively. Appreciable amounts of diisononyl phthalate, diisodecyl phthalate, dinonyl phthalate, and skin lipid (e.g., squalene) were detected in watchbands but not in disks. Apparently, the passive sampler can prevent particles and skin-related chemicals from adhering to the disk and collect gaseous PAEs only. The vast majority of PAEs in watchbands was associated with nongaseous constituents. The present study demonstrated that the sampling strategy is a key factor in exposure assessment.
Collapse
Affiliation(s)
- Yun Hong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chun-Yan Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
42
|
Zhang Y, Huang B, He H, Wang X, Sabel CE, Thomsen M, Chen Z, Wang W. Urinary phthalate metabolites among workers in plastic greenhouses in western China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117939. [PMID: 34426182 DOI: 10.1016/j.envpol.2021.117939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Agricultural plastic greenhouse (PG) production can extend the growing season of crops to satisfy domestic consumption in countries such as China. Workers in PGs have potential higher phthalate exposure risks than the general population as phthalate accumulation has been observed in greenhouse soil, air, and crops. To date, biomonitoring tests of phthalates for the working population have not been carried out. To address this shortage, we conducted a pilot study in Shaanxi Province, China, among 35 healthy PG workers by follow-up recording their seasonal dietary habits and work activities and urine sample collection and measurement between 2018 and 2019. The objectives were to uncover the association between phthalate metabolites and the population characteristics, seasonal and diurnal variations and causes, and to estimate exposure risks and contributions of exposure pathways from PG production systems. A total of 13 phthalate metabolite concentrations (Σ13 phthalate metabolites) ranged from 102 to 781 (5th-95th) ng/mL (median: 300 ng/mL). Mono-n-butyl phthalate (MNBP) made up 51.3% of Σ13 phthalate metabolites, followed by the sum of four di-2-ethylhexyl phthalate (DEHP) metabolites (24.2%), mono-2-isobutyl phthalate (MIBP) (13.4%), and mono-ethyl phthalate (MEP) (9.8%). The concentrations of MNBP and MIBP in summer were significantly higher than the levels in winter (p < 0.0001). A total of 62.3% of the PG worker population was shown to have exposure risks, and the proportion was as high as 79.4% in summer. Phthalate exposure of the workers from PG production systems constituted over 20% of the total creatinine-based daily intake, and consuming vegetables and fruit planted in PGs and inhalation in PGs were the two largest exposure pathways. Our findings demonstrate that it is important to protect workers in PGs from phthalate exposure risks, and phasing out the use of plastic materials containing phthalates in PGs is imperative, to guarantee food safety in PGs.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus C, Denmark.
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Clive E Sabel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark; Big Data Centre for Environment and Health, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Marianne Thomsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Zhikun Chen
- Key Laboratory of Soil Resource & Biotech Applications, Shaanxi Academy of Sciences, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Weixi Wang
- Key Laboratory of Soil Resource & Biotech Applications, Shaanxi Academy of Sciences, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| |
Collapse
|
43
|
Lee JY, Lee J, Huh DA, Moon KW. Association between environmental exposure to phthalates and allergic disorders in Korean children: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Int J Hyg Environ Health 2021; 238:113857. [PMID: 34644676 DOI: 10.1016/j.ijheh.2021.113857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phthalates are common industrial chemicals that are used as plasticizers in plastics, personal care products, and building materials. Although these chemicals have been suspected as risk factors for allergic outcomes among children, inconsistent associations between environmental exposure to phthalates and allergic disorders have been found across different populations. Therefore, this study aimed to assess whether environmental phthalate exposure was associated with parent-reported current allergic symptoms (atopic dermatitis, AD; asthma; and allergic rhinitis, AR) and the index of allergic response (levels of serum total immunoglobulin E, IgE) in a nationally representative sample of children. METHODS In this study, children aged 3-17 years (n = 2208) were recruited from the Korean National Environmental Health Survey (KoNEHS) 2015-2017 to conduct an analysis of their current allergic symptoms. Among this number of children, the total IgE analysis included 806 participants because total IgE levels were only measured in children aged 12-17 years. RESULTS After adjusting for all covariates, mono-benzyl phthalate (MBzP) [OR (95% CI) = 1.15 (1.01, 1.30)], mono-(carboxyoctyl) phthalate (MCOP) [OR (95% CI) = 1.35 (1.02, 1.78)], and the sum of di-(2-ethylhexyl) phthalate metabolites (∑DEHP) [OR (95% CI) = 1.39 (1.09, 1.79)] were associated with increased odds of current AD. MCOP [OR (95% CI) = 1.19 (1.01, 1.40)], mono-(carboxynonyl) phthalate (MCNP) [OR (95% CI) = 1.24 (1.05, 1.45)], and ∑DEHP [OR (95% CI) = 1.22 (1.02, 1.44)] were also associated with increased odds of current AR. Individual DEHP metabolites showed similar associations with current AD and AR. In addition, MCNP was positively related to IgE levels [β (95% CI) = 0.26 (0.12, 0.40)]. MBzP [OR (95% CI) = 1.17 (1.01, 1.35)], MCOP [OR (95% CI) = 1.62 (1.12, 2.32)], and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) [OR (95% CI) = 1.36 (1.06, 1.76)] showed positive relationships with allergic multimorbidity. Moreover, higher concentrations of MCNP were related to increased odds of experiencing both current AR and total IgE levels [OR (95% CI) = 1.98 (1.29, 3.04)], and children with elevated IgE levels (>100IU/mL) were more likely to have current AR associated with MCNP than those without elevated IgE levels (p = 0.007). Specifically, the relationship between MCNP and current AR was significantly mediated through alterations in IgE levels (14.7%), and MCNP also showed the positive association with current AR, independent of IgE (85.3%). CONCLUSION These results suggest that environmental exposure to phthalates may affect the immune system and increase the occurrence of allergic symptoms in children.
Collapse
Affiliation(s)
- Ju-Yeon Lee
- Department of Health and Safety Convergence Science, Korea University, Seoul, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea
| | - Jiyun Lee
- Department of Health and Safety Convergence Science, Korea University, Seoul, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Kyong Whan Moon
- BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Republic of Korea; Department of Health and Environmental Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Ghassabian A, Vandenberg L, Kannan K, Trasande L. Endocrine-Disrupting Chemicals and Child Health. Annu Rev Pharmacol Toxicol 2021; 62:573-594. [PMID: 34555290 DOI: 10.1146/annurev-pharmtox-021921-093352] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While definitions vary, endocrine-disrupting chemicals (EDCs) have two fundamental features: their disruption of hormone function and their contribution to disease and disability. The unique vulnerability of children to low-level EDC exposures has eroded the notion that only the dose makes the thing a poison, requiring a paradigm shift in scientific and policy practice. In this review, we discuss the unique vulnerability of children as early as fetal life and provide an overview of epidemiological studies on programming effects of EDCs on neuronal, metabolic, and immune pathways as well as on endocrine, reproductive, and renal systems. Building on this accumulating evidence, we dispel and address existing myths about the health effects of EDCs with examples from child health research. Finally, we provide a list of effective actions to reduce exposure, and subsequent harm that are applicable to individuals, communities, and policy-makers. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA.,Wagner School of Public Service and College of Global Public Health, New York University, New York, NY 10016, USA
| |
Collapse
|
45
|
Le TM, Nguyen HMN, Nguyen VK, Nguyen AV, Vu ND, Yen NTH, Hoang AQ, Minh TB, Kannan K, Tran TM. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147831. [PMID: 34034168 DOI: 10.1016/j.scitotenv.2021.147831] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Contamination levels and distribution patterns of ten typical phthalic acid esters (PAEs) were investigated in various types of water samples collected from Hanoi metropolitan area in Vietnam. Concentrations of 10 PAEs in bottled water, tap water, lake water, and wastewater samples were measured in the ranges of 1640-15,700 ng/L (mean/median: 6400/5820 ng/L), 2100-18,000 ng/L (mean/median: 11,200/9270 ng/L), 19,600-127,000 ng/L (mean/median: 51,800/49,300 ng/L), and 20,700-405,000 ng/L (mean/median: 121,000/115,000 ng/L), respectively. Among PAEs, di-(2-ethylhexyl) phthalate (DEHP) accounted for a major proportion of total concentrations (45%) in wastewater, followed by diisobutyl phthalate (DiBP, 10.3%), and dibutyl phthalate (DBP, 9.53%). Concentrations of PAEs in wastewater decreased significantly with distance from the wastewater treatment plants (WWTPs). Concentrations of PAEs in surface water samples did not vary greatly between locations. PAEs were found in bottled water in the following order: DBP (22.4%), DiBP (22.3%), benzylbutyl phthalate (BzBP, 20.1%), and DEHP (15.5%). The estimated mean exposure doses of 10 PAEs through consumption of drinking water for adults and children in Vietnam were 254 and 256 ng/kg-bw/day, respectively. Capsule: Highest concentrations of PAEs were measured in wastewater, followed by lake water, tap water, and bottled water.
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Ha Tinh University, Cam Vinh Commune, Cam Xuyen District, Ha Tinh 45000, Viet Nam
| | - Vy Khanh Nguyen
- Chemistry Department, The College of Wooster, 1189 Beall Avenue, Wooster, OH 44691, USA
| | - Anh Viet Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam
| | - Nguyen Thi Hong Yen
- National Institute of Hygiene and Epidemiology, 1 Yersin streat, Ha Ba Trung, Hanoi 10000, Viet Nam
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam.
| |
Collapse
|
46
|
Hou H, Min Y, Liu X, Wang P, Zhou Z, Liu D. Occurrence and migration of phthalates in adhesive materials to fruits and vegetables. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126277. [PMID: 34118542 DOI: 10.1016/j.jhazmat.2021.126277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Labels or tapes are widely used on fresh fruits and vegetables, which may contain phthalates (PAEs). There are few studies on the contamination pathway of PAEs from labels or tapes to food stuff. In this study, the concentrations of eleven PAEs in adhesive labels, tapes, labeled fruits and vegetables on the market were investigated. The eleven PAEs were detected with the total concentration of 7.44-30.51 mg/m2 in labels and tapes. Diethyl phthalate (DEP), di-n-butyl phthalate (DIBP), dimethyl phthalate (DMP), Bis (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) had the highest detection frequency in adhesive material samples. The concentrations of PAEs in labeled fruits were higher than that in unlabeled fruits, especially in the peel, indicating PAEs could transfer from labels or tapes to fruits and vegetables. Furthermore, the migration behaviors of PAEs from labels or tapes to apples, avocados and celery were investigated. It was found that the PAEs could penetrate to apple and avocado pulp through the peel, resulting in the residue of the PAEs in the whole fruit. Unlike apple peel, the thick avocado peel was more difficultly penetrated by the PAEs. Due to the high lipid content, the PAEs distributed more evenly in avocado pulp than in apple pulp. The migrations up to a maximum of 4.16 mg/kg were found for butyl benzyl phthalate (BBP) in avocado peel and up to a maximum of 0.188 mg/kg in avocado pulp. The average migration of the PAEs in celery ranged from 0.3 to 26.1 μg/kg in three days and the low migration might result from the rough surface and less contacting area. These findings suggest that the use of labels or tapes in direct contact may increase the risk of PAEs exposure to humans through fruits and vegetables.
Collapse
Affiliation(s)
- Haonan Hou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yihao Min
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health. Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
47
|
Huang C, Zhang YJ, Liu LY, Wang F, Guo Y. Exposure to phthalates and correlations with phthalates in dust and air in South China homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146806. [PMID: 33836381 DOI: 10.1016/j.scitotenv.2021.146806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
We spend more than half of our daily time in indoor environments, and the contributions of phthalates present in it to total exposure are important. Here, we determined phthalate concentrations in paired indoor settled dust/air and their metabolites in human urine from 100 general families in south China to explore such kind of effect. The total concentrations of phthalates/metabolites were 48.7-2850 μg/g, 279-5080 ng/m3 and 10.7-2840 ng/mL in the indoor dust, air and urine samples, respectively. Among all targets, di-n-butyl phthalate, di-isobutyl phthalate and di-(2-ethylhexyl) phthalate and their metabolites were the predominant compounds. The daily intakes (DIs) of phthalates via dust or air decreased with age, except for infant, and the values of dust ingestion, air inhalation and air dermal uptake were 2720 ± 2460, 1300 ± 973 and 3590 ± 2890 ng/kg/day for toddlers and 236 ± 194, 360 ± 179 and 1120 ± 586 ng/kg/day for adults, respectively. The ratios of DIs from air to dust were greater than 1.0 for people in all age groups, and the ratio was the highest for adults. Furthermore, the contributions of phthalates from indoor dust and air to total DIs from all sources (estimated from urinary phthalate metabolites) were 0.60%-5.23% and 2.65%-12.2% for different ages, respectively. Our results indicated that indoor air was a quite important source for human exposure to phthalates in indoor environment in south China.
Collapse
Affiliation(s)
- Cong Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, School of Environment, Guangzhou 510632, China.
| |
Collapse
|
48
|
Boyle MD, Kavi LK, Louis LM, Pool W, Sapkota A, Zhu L, Pollack AZ, Thomas S, Rule AM, Quirós-Alcalá L. Occupational Exposures to Phthalates among Black and Latina U.S. Hairdressers Serving an Ethnically Diverse Clientele: A Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8128-8138. [PMID: 34078083 DOI: 10.1021/acs.est.1c00427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hairdressers may be differentially exposed to phthalates through hair salon services provided and products used, yet no U.S. studies have investigated these exposures in this population. We characterized concentrations and exposure determinants to nine phthalate metabolites in postshift urine samples among 23 hairdressers from three Black and three Dominican salons, as well as a comparison group of 17 female office workers from the Maryland/Washington D.C. metropolitan area. Overall, hairdressers had higher metabolite concentrations than office workers. The geometric mean (GM) for monoethyl phthalate (MEP) was 10 times higher in hairdressers (161.4 ng/mL) than office workers (15.3 ng/mL). Hairdressers providing select services and using certain products had higher GM MEP concentrations than those who did not: permanent waves/texturizing (200.2 vs 115.4 ng/mL), chemical straightening/relaxing (181.6 vs 92.1 ng/mL), bleaching (182.3 vs 71.6 ng/mL), permanent hair color (171.9 vs 83.2 ng/mL), and Brazilian blowout/keratin treatments (181.4 vs 134.6 ng/mL). Interestingly, hairdressers providing natural services had lower GM MEP concentrations than those who did not: twists (129.1 vs 215.8 ng/mL), sister locs/locs (86.0 vs 241.9 ng/mL), and afros (94.7 vs 203.9 ng/mL). Larger studies are warranted to confirm our findings and identify disparities in occupational phthalate exposures.
Collapse
Affiliation(s)
- Meleah D Boyle
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Lucy K Kavi
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Lydia M Louis
- Bloomberg School of Public Health, Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Walkiria Pool
- Centro de Apoyo Familiar, Hyatsville, Maryland 20737, United States
| | - Amir Sapkota
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Linyan Zhu
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Anna Z Pollack
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, Virginia 22030, United States
| | - Stephen Thomas
- Maryland Center for Health Equity, University of Maryland, College Park, Maryland 20742, United States
| | - Ana M Rule
- Bloomberg School of Public Health, Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Lesliam Quirós-Alcalá
- Bloomberg School of Public Health, Department of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
49
|
Huang S, Qi Z, Ma S, Li G, Long C, Yu Y. A critical review on human internal exposure of phthalate metabolites and the associated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116941. [PMID: 33756240 DOI: 10.1016/j.envpol.2021.116941] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Phthalates (PAEs) are popular synthetic chemicals used as plasticizers and solvents for various products, such as polyvinyl chloride or personal care products. Human exposure to PAEs is associated with various diseases, resulting in PAE biomonitoring in humans. Inhalation, dietary ingestion, and dermal absorption are the major human exposure routes. However, estimating the actual exposure dose of PAEs via an external route is difficult. As a result, estimation by internal exposure has become the popular analytical methods to determine the concentrations of phthalate metabolites (mPAEs) in human matrices (such as urine, serum, breast milk, hair, and nails). The various exposure sources and patterns result in different composition profiles of PAEs in biomatrices, which vary from country to country. Nevertheless, the mPAEs of diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP), and di-(2-ethylhexyl) phthalate (DEHP) are predominant in the urine. These mPAEs have greater potential health risks for humans. Children have been observed to exhibit higher exposure risks to several mPAEs than adults. Besides age, other influencing factors for phthalate exposure are gender, jobs, and residential areas. Although many studies have reported biological monitoring of PAEs, only a few reviews that adequately summarized the reports are available. The current review appraised available studies on mPAE quantitation in human biomatrices and estimated the dose and health risks of phthalate exposure. While some countries lack biomonitoring data, some countries' data do not reflect the current PAE exposure. Thence, future studies should involve frequent PAE biomonitoring to accurately estimate human exposure to PAEs, which will contribute to health risk assessments of human exposure to PAEs. Such would aid the formulation of corresponding regulations and restrictions by the government.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China.
| |
Collapse
|
50
|
Relationship of Urinary Phthalate Metabolites with Cardiometabolic Risk Factors and Oxidative Stress Markers in Children and Adolescents. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:5514073. [PMID: 33995534 PMCID: PMC8096563 DOI: 10.1155/2021/5514073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Introduction Studies have proved that exposure of adults to phthalates might be related to cardiometabolic risk factors and changes in markers of oxidative stress. Such studies conducted on school-age children and adolescents are limited and fail to assess the simultaneous effect of phthalates on these risk factors and oxidative stress markers. Therefore, it was attempted to identify the relationship of urinary phthalate metabolites with cardiometabolic risk factors and oxidative stress markers in children and adolescents. Methods. In this cross-sectional study, 108 children and adolescents, living in Isfahan industrial city of Iran, were examined. Urine samples taken from the participants were analyzed for mono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-exohexyl) phthalate (MEOHP), and mono-methyl phthalate (MMP). Results Results showed that, among phthalate metabolites, MBP had the highest concentration, followed by MBzP, MEOHP, MEHHP, MEHP, and MMP. Concentrations of these metabolites had a significant relationship with some of the cardiometabolic risk factors including systolic blood pressure (SBP), fasting blood sugar (FBS), and triglycerides (TG) (p < 0.05). Furthermore, the crude and adjusted linear regression models indicated the significant association of phthalate metabolites with superoxide dismutase (SOD), malondialdehyde (MDA), and homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.05). Conclusion Although urinary phthalate concentrations could not exactly reflect the long-term exposure level in the studied age groups, the consumption of phthalate-free products during childhood and adolescent development shall be assumed helpful in maintaining a healthy lifestyle. To confirm these findings and develop effective intervention strategies, it would be necessary to perform longitudinal studies on diverse population.
Collapse
|