1
|
Rasi Bonab F, Baghbanzadeh A, Ghaseminia M, Bolandi N, Mokhtarzadeh A, Amini M, Dadashzadeh K, Hajiasgharzadeh K, Baradaran B, Bannazadeh Baghi H. Molecular pathways in the development of HPV-induced cervical cancer. EXCLI JOURNAL 2021; 20:320-337. [PMID: 33746665 PMCID: PMC7975633 DOI: 10.17179/excli2021-3365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Recently, human papillomavirus (HPV) has gained considerable attention in cervical cancer research studies. It is one of the most important sexually transmitted diseases that can affect 160 to 289 out of 10000 persons every year. Due to the infectious nature of this virus, HPV can be considered a serious threat. The knowledge of viral structure, especially for viral oncoproteins like E6, E7, and their role in causing cancer is very important. This virus has different paths (PI3K/Akt, Wnt/β-catenin, ERK/MAPK, and JAK/STAT) that are involved in the transmission of signaling paths through active molecules like MEK (pMEK), ERK (pERK), and Akt (pAkt). It's eventually through these paths that cancer is developed. Precise knowledge of these paths and their signals give us the prognosis to adopt appropriate goals for prevention and control of these series of cancer.
Collapse
Affiliation(s)
- Farnaz Rasi Bonab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Ghaseminia
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kianoosh Dadashzadeh
- Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Musa A, Ghoraie LS, Zhang SD, Glazko G, Yli-Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib F. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 2018; 19:506-523. [PMID: 28069634 PMCID: PMC5952941 DOI: 10.1093/bib/bbw112] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large-scale perturbation databases, such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular Signatures (LINCS), provide enormous opportunities for computational pharmacogenomics and drug design. A reason for this is that in contrast to classical pharmacology focusing at one target at a time, the transcriptomics profiles provided by CMap and LINCS open the door for systems biology approaches on the pathway and network level. In this article, we provide a review of recent developments in computational pharmacogenomics with respect to CMap and LINCS and related applications.
Collapse
Affiliation(s)
- Aliyu Musa
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Galina Glazko
- University of Rochester Department of Biostatistics and Computational Biology, Rochester, New York, USA
| | - Olli Yli-Harja
- Computational Systems Biology, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT- The Health and Life Sciences University, Eduard Wallnoefer Zentrum 1, Hall in Tyrol, Austria
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Frank Emmert-Streib
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
3
|
He YE, Qiu HX, Jiang JB, Wu RZ, Xiang RL, Zhang YH. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot. Mol Med Rep 2017; 16:2707-2713. [PMID: 28713939 PMCID: PMC5548054 DOI: 10.3892/mmr.2017.6933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF.
Collapse
Affiliation(s)
- Yue-E He
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hui-Xian Qiu
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jian-Bing Jiang
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Rong-Zhou Wu
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ru-Lian Xiang
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yuan-Hai Zhang
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
4
|
Abstract
An abundance of data has provided insight into the mechanisms underlying the development of left ventricular (LV) hypertrophy and its progression to LV failure. In contrast, there is minimal data on the adaptation of the right ventricle (RV) to pressure and volume overload and the transition to RV failure. This is a critical clinical question, because the RV is uniquely at risk in many patients with repaired or palliated congenital heart disease and in those with pulmonary hypertension. Standard heart failure therapies have failed to improve function or survival in these patients, suggesting a divergence in the molecular mechanisms of RV versus LV failure. Although, on the cellular level, the remodeling responses of the RV and LV to pressure overload are largely similar, there are several key differences: the stressed RV is more susceptible to oxidative stress, has a reduced angiogenic response, and is more likely to activate cell death pathways than the stressed LV. Together, these differences could explain the more rapid progression of the RV to failure versus the LV. This review will highlight known molecular differences between the RV and LV responses to hemodynamic stress, the unique stressors on the RV associated with congenital heart disease, and the need to better understand these molecular mechanisms if we are to develop RV-specific heart failure therapeutics.
Collapse
Affiliation(s)
- Sushma Reddy
- From Department of Pediatrics (Cardiology) and the Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA.
| | - Daniel Bernstein
- From Department of Pediatrics (Cardiology) and the Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA
| |
Collapse
|