1
|
Mortezaeian H, Firouzi A, Ebrahimi P, Anafje M, Bashghareh P, Doung P, Qureshi S. Rupture of a calcified right ventricle to pulmonary artery homograft by balloon dilation- emergency rescue by venus P-Valve. Int J Emerg Med 2024; 17:102. [PMID: 39210259 PMCID: PMC11363450 DOI: 10.1186/s12245-024-00702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Percutaneous pulmonary valve implantation (PPVI) is a recognized alternative treatment to surgery for patients with dysfunctional right ventricular outflow tracts. Patient selection is essential to avoid serious complications from attempted treatment, such as rupture or dissection, especially of the calcified outflow tracts. We describe a case with an unexpected rupture of a calcified homograft valve and main pulmonary artery, which was treated successfully by emergency implantation of a self-expanding Venus P-Valve (Venus MedTech, Hangzhou, China) without the need for pre-stenting with a covered stent. CASE DETAILS A 13-year-old boy had two previous operations of tetralogy of Fallot, one a total repair and the other a homograft valved conduit for pulmonary regurgitation. He presented with dyspnea and severe right ventricular outflow tract obstruction (RVOTO) and had a calcified outflow tract and main pulmonary artery. In the catheter laboratory, a non-compliant balloon dilation resulted in a contained rupture of the conduit. The patient remained hemodynamically stable, and the rupture was treated with a self-expandable Venus P-Valve without the need for a covered stent combined with a balloon-expandable valve or a further surgical procedure. DISCUSSION Preprocedural evaluation with an inflating balloon is necessary to examine tissue compliance and determine suitability for PPVI. However, this condition is accompanied by a risk of conduit rupture. Risk factors of this complication are calcification and homograft use. These ruptures are mostly controlled with a prophylactic or therapeutic covered stent, with a low rate of requiring surgery. However, there are severe ruptures which lead to hemothorax and death. In the available literature, there was no similar reported case of conduit rupture, which a self-expandable Pulmonary valve stent has managed. It seems that fibrosis and collagen tissue around the heart, formed after open surgeries, can contribute to the control of bleeding in these cases. CONCLUSION (CLINICAL LEARNING POINT) The suitability of patients for the PPVI procedure should be examined more carefully, specifically patients with homograft and calcification in their conduit. Furthermore, conduit rupture might be manageable with self-expandable artificial pulmonary valves, specifically in previously operated patients, and the applicability of this hypothesis is worth examining in future research.
Collapse
Affiliation(s)
- Hojjat Mortezaeian
- Cardiovascular Intervention Research Center, Rajaei Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Ata Firouzi
- Cardiovascular Intervention Research Center, Rajaei Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Pouya Ebrahimi
- Cardiovascular Disease Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Anafje
- Rajaei Cardiovascular Medical and Research Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- School of Medicine, Rajaei Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, 1995614331, Iran.
| | - Peyman Bashghareh
- Cardiovascular Intervention Research Center, Rajaei Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Phuoc Doung
- Department of Cardiology and Cardiac Surgery, Alder Hey Children's Hospital, Liverpool, UK
| | - Shakeel Qureshi
- Department of Pediatric Cardiology, Evelina London Children's Hospital, Guy's and St Thomas Hospital Foundation Trust, London, UK
| |
Collapse
|
2
|
Matoq A, Shahanavaz S. Transcatheter Pulmonary Valve in Congenital Heart Disease. Interv Cardiol Clin 2024; 13:369-384. [PMID: 38839170 DOI: 10.1016/j.iccl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Over the last 2 decades, experience with transcatheter pulmonary valve replacement (TPVR) has grown significantly and has become an effective and reliable way of treating pulmonary valve regurgitation, right ventricular outflow (RVOT) obstruction, and dysfunctional bioprosthetic valves and conduits. With the introduction of self-expanding valves and prestents, dilated native RVOT can be addressed with the transcatheter approach. In this article, the authors review the current practices, technical challenges, and outcomes of TPVR.
Collapse
Affiliation(s)
- Amr Matoq
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Shabana Shahanavaz
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Lopes V, Almeida PC, Moreira N, Ferreira LA, Teixeira R, Donato P, Gonçalves L. Computed tomography imaging in preprocedural planning of transcatheter valvular heart interventions. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1163-1181. [PMID: 38780710 DOI: 10.1007/s10554-024-03140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Cardiac Computed Tomography (CCT) has become a reliable imaging modality in cardiology providing robust information on the morphology and structure of the heart with high temporal and isotropic spatial resolution. For the past decade, there has been a paradigm shift in the management of valvular heart disease since previously unfavorable candidates for surgery are now provided with less-invasive interventions. Transcatheter heart valve interventions provide a real alternative to medical and surgical management and are often the only treatment option for valvular heart disease patients. Successful transcatheter valve interventions rely on comprehensive multimodality imaging assessment. CCT is the mainstay imaging technique for preprocedural planning of these interventions. CCT is critical in guiding patient selection, choice of procedural access, device selection, procedural guidance, as well as allowing postprocedural follow-up of complications. This article aims to review the current evidence of the role of CCT in the preprocedural planning of patients undergoing transcatheter valvular interventions.
Collapse
Affiliation(s)
- Vanessa Lopes
- Cardiology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal.
| | - Pedro Carvalho Almeida
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Nádia Moreira
- Cardiology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Luís Amaral Ferreira
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Rogério Teixeira
- Cardiology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Univ Coimbra, Coimbra, Portugal
| | - Paulo Donato
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Univ Coimbra, Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translation Research (CIBIT), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Lino Gonçalves
- Cardiology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Univ Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Univ Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Univ Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Clifford T, Androshchuk V, Rajani R, Weir-McCall JR. Pretranscatheter and Posttranscatheter Valve Planning with Computed Tomography. Radiol Clin North Am 2024; 62:419-434. [PMID: 38553178 DOI: 10.1016/j.rcl.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The range of potential transcatheter solutions to valve disease is increasing, bringing treatment options to those in whom surgery confers prohibitively high risk. As the range of devices and their indications grow, so too will the demand for procedural planning. Computed tomography will continue to enable this growth through the provision of accurate device sizing and procedural risk assessment.
Collapse
Affiliation(s)
- Thomas Clifford
- Department of Radiology, Royal Papworth Hospital, Cambridge, UK
| | | | - Ronak Rajani
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jonathan R Weir-McCall
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 219, Level 5, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.
| |
Collapse
|
5
|
Kwon HW, Song MK, Lee SY, Kim GB, Kwak JG, Cho S, Kim WH, Bae EJ. Risk Factors for Coronary Artery Complications After Prosthetic Pulmonary Valve Implantation in Patients With Congenital Heart Disease. Circ J 2024; 88:652-662. [PMID: 38325847 DOI: 10.1253/circj.cj-23-0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND Coronary artery complications (CACs) in patients who undergoing prosthetic pulmonary valve implantation for congenital heart disease can lead to fetal outcomes. However, the incidence of and risk factors for CACs in these patients remain unknown. METHODS AND RESULTS A retrospective cohort study was conducted on patients who underwent cardiac computed tomography or invasive coronary angiography after prosthetic pulmonary valve implantation at Seoul National University Hospital from June 1986 to May 2021. Among 341 patients, 25 (7.3%) were identified with CACs, and 2 of them died. Among the patients with CACs, congenital coronary anomalies and an interarterial course of the coronary artery were identified in 11 (44%) and 18 (72%) patients, respectively. Interarterial and intramural courses of the coronary artery were associated with a 4.4- and 10.6-fold increased risk of CACs, respectively. Among patients with tetralogy of Fallot and pulmonary atresia, the aortic root was rotated further clockwise in patients with coronary artery compression compared to those without it (mean [±SD] 128.0±19.9° vs. 113.5±23.7°; P=0.024). The cut-off rotation angle of the aorta for predicting the occurrence of coronary artery compression was 133°. CONCLUSIONS Perioperative coronary artery evaluation and prevention of CACs are required in patients undergoing prosthetic pulmonary valve implantation, particularly in those with coronary artery anomalies or severe clockwise rotation of the aortic root.
Collapse
Affiliation(s)
- Hye Won Kwon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| | - Mi Kyoung Song
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine
| | - Sang Yun Lee
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine
| | - Jae Gun Kwak
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| | - Sungkyu Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| | - Woong-Han Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| | - Eun Jung Bae
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine
| |
Collapse
|
6
|
Donahue CL, Westman CL, Faanes BL, Qureshi AM, Barocas VH, Aggarwal V. Finite element modeling with patient-specific geometry to assess clinical risks of percutaneous pulmonary valve implantation. Catheter Cardiovasc Interv 2024. [PMID: 38597297 DOI: 10.1002/ccd.31016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Percutaneous pulmonary valve implantation (PPVI) is a non-surgical treatment for right ventricular outflow tract (RVOT) dysfunction. During PPVI, a stented valve, delivered via catheter, replaces the dysfunctional pulmonary valve. Stent oversizing allows valve anchoring within the RVOT, but overexpansion can intrude on the surrounding structures. Potentially dangerous outcomes include aortic valve insufficiency (AVI) from aortic root (AR) distortion and myocardial ischemia from coronary artery (CA) compression. Currently, risks are evaluated via balloon angioplasty/sizing before stent deployment. Patient-specific finite element (FE) analysis frameworks can improve pre-procedural risk assessment, but current methods require hundreds of hours of high-performance computation. METHODS We created a simplified method to simulate the procedure using patient-specific FE models for accurate, efficient pre-procedural PPVI (using balloon expandable valves) risk assessment. The methodology was tested by retrospectively evaluating the clinical outcome of 12 PPVI candidates. RESULTS Of 12 patients (median age 14.5 years) with dysfunctional RVOT, 7 had native RVOT and 5 had RV-PA conduits. Seven patients had undergone successful RVOT stent/valve placement, three had significant AVI on balloon testing, one had left CA compression, and one had both AVI and left CA compression. A model-calculated change of more than 20% in lumen diameter of the AR or coronary arteries correctly predicted aortic valve sufficiency and/or CA compression in all the patients. CONCLUSION Agreement between FE results and clinical outcomes is excellent. Additionally, these models run in 2-6 min on a desktop computer, demonstrating potential use of FE analysis for pre-procedural risk assessment of PPVI in a clinically relevant timeframe.
Collapse
Affiliation(s)
- Carly L Donahue
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Claire L Westman
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Brittany L Faanes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Athar M Qureshi
- Department of Pediatrics, The Lillei Frank Abercombie Section of Pediatric Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Varun Aggarwal
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Truesdell W, Salavitabar A, Zampi JD, Agarwal P, Joshi A. An Imager's Overview to Transcatheter Pulmonic Valve Replacement. Semin Roentgenol 2024; 59:76-86. [PMID: 38388100 DOI: 10.1053/j.ro.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/24/2024]
Affiliation(s)
| | - Arash Salavitabar
- Department of Pediatric Cardiology, Nationwide Children's Hospital, Columbus, OH
| | - Jeffrey D Zampi
- Department of Pediatric Cardiology, Michigan Medicine, Ann Arbor, MI
| | - Prachi Agarwal
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Aparna Joshi
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
8
|
Patel ND, Levi DS, Cheatham JP, Qureshi SA, Shahanavaz S, Zahn EM. Transcatheter Pulmonary Valve Replacement: A Review of Current Valve Technologies. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2022; 1:100452. [PMID: 39132347 PMCID: PMC11307711 DOI: 10.1016/j.jscai.2022.100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 08/13/2024]
Abstract
Transcatheter pulmonary valve replacement was first performed by Dr Philip Bonhoeffer, who implanted a Medtronic Melody valve in a human in 2000. Over the past 2 decades, there have been many advances in transcatheter pulmonary valve technology. This includes the use of the SAPIEN transcatheter heart valve in the pulmonary position, modifications and refinements to valve implantation procedures, and development of self-expanding valves and prestents to treat large diameter native or patched right ventricular outflow tracts. This article reviews the current transcatheter pulmonary valve technologies with a focus on valve design, screening process, implant procedure, and clinical outcomes.
Collapse
Affiliation(s)
- Neil D. Patel
- Children’s Hospital Los Angeles, Los Angeles, California
| | - Daniel S. Levi
- Mattel Children's Hospital at The University of California, Los Angeles, Los Angeles, California
| | | | | | | | - Evan M. Zahn
- Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
9
|
Canan A, Ocazionez-Trujillo D, Vargas D, Foley TA, Cabalka AK, Rajiah PS. Pre- and Postprocedure Imaging of Transcatheter Pulmonary Valve Implantation. Radiographics 2022; 42:991-1011. [PMID: 35687519 DOI: 10.1148/rg.210160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcatheter pulmonary valve replacement (TPVR) is a minimally invasive procedure for treatment of right ventricular outflow tract (RVOT) dysfunction in surgically repaired congenital heart diseases. TPVR is performed in these patients to avoid the high risk and complexity of repeat surgeries. Several TPVR devices are now available to be placed in the right ventricle (RV) to pulmonary artery (PA) conduit, native RVOT, or surgical bioprosthetic valves. Imaging is used before TPVR to determine patient eligibility and optimal timing, which is critical to avoid irreversible RV dilatation and failure. Imaging is also required for evaluation of contraindications, particularly proximity of the RVOT to the left main coronary artery and its branches. Cross-sectional imaging provides details of the complex anatomy in which the TPVR device will be positioned and measurements of the RVOT, RV-PA conduit, or PA. Echocardiography is the first-line imaging modality for evaluation of the RVOT or conduit to determine the need for intervention, although its utility is limited by the complex RVOT morphology and altered anatomy after surgery. CT and MRI provide complementary information for TPVR, including patient eligibility, assessment of contraindications, and key measurements of the RVOT and PA, which are necessary for procedure planning. TPVR, performed using a cardiac catheterization procedure, includes a sizing step in which a balloon is expanded in the RVOT, which also allows assessment of the risk for extrinsic coronary artery compression. Follow-up imaging with CT and MRI is used for evaluation of postprocedure remodeling and valve function and to monitor complications. ©RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Arzu Canan
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (A.C.); Department of Radiology, UT Health Sciences Center, Houston, Tex (D.O.T.); Department of Radiology, University of Colorado, Aurora, Colo (D.V.); and Department of Radiology (T.A.F., P.S.R.) and Division of Cardiology (A.K.C.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Daniel Ocazionez-Trujillo
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (A.C.); Department of Radiology, UT Health Sciences Center, Houston, Tex (D.O.T.); Department of Radiology, University of Colorado, Aurora, Colo (D.V.); and Department of Radiology (T.A.F., P.S.R.) and Division of Cardiology (A.K.C.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Daniel Vargas
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (A.C.); Department of Radiology, UT Health Sciences Center, Houston, Tex (D.O.T.); Department of Radiology, University of Colorado, Aurora, Colo (D.V.); and Department of Radiology (T.A.F., P.S.R.) and Division of Cardiology (A.K.C.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Thomas A Foley
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (A.C.); Department of Radiology, UT Health Sciences Center, Houston, Tex (D.O.T.); Department of Radiology, University of Colorado, Aurora, Colo (D.V.); and Department of Radiology (T.A.F., P.S.R.) and Division of Cardiology (A.K.C.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Allison K Cabalka
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (A.C.); Department of Radiology, UT Health Sciences Center, Houston, Tex (D.O.T.); Department of Radiology, University of Colorado, Aurora, Colo (D.V.); and Department of Radiology (T.A.F., P.S.R.) and Division of Cardiology (A.K.C.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Prabhakar Shantha Rajiah
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (A.C.); Department of Radiology, UT Health Sciences Center, Houston, Tex (D.O.T.); Department of Radiology, University of Colorado, Aurora, Colo (D.V.); and Department of Radiology (T.A.F., P.S.R.) and Division of Cardiology (A.K.C.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
10
|
Romans RA, Lu JC, Balasubramanian S, Whiteside W, Yu S, Aldoss OT, Armstrong AK, Boe BA, Balzer DT, Christensen JT, Jones TK, Keeshan B, McLennan D, Nicholson GT, Patel N, Salavitabar A, Shahanavaz S, Sullivan PM, Turner ME, Zampi JD. Cardiac Magnetic Resonance to Predict Coronary Artery Compression in Transcatheter Pulmonary Valve Implantation Into Conduits. JACC Cardiovasc Interv 2022; 15:979-988. [PMID: 35512922 DOI: 10.1016/j.jcin.2022.02.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the accuracy of cardiac magnetic resonance (CMR) in predicting coronary artery (CA) compression during transcatheter pulmonary valve implantation (TPVi). BACKGROUND TPVi is a widely available option to treat dysfunctional right ventricle (RV)-to-pulmonary artery (PA) conduits, but CA compression is an absolute contraindication. CMR can evaluate coronary anatomy, but its utility in predicting CA compression is not well established. METHODS After Institutional Review Board approval was obtained, all patients at 9 centers with attempted TPVi in RV-PA conduits and recent CMR (≤12 months) were analyzed. A core laboratory reviewed all CMR studies for the shortest orthogonal distance from a CA to the conduit, the shortest distance from a CA to the most stenotic area of the conduit, and subjective assessment of CA compression risk. RESULTS Among 231 patients, TPVi was successful in 198 (86%); in 24 (10%), balloon testing precluded implantation (documented CA compression or high risk). Distance to the RV-PA conduit ≤2.1 mm (area under the curve [AUC]: 0.70) and distance to most stenotic area ≤13.1 mm (AUC: 0.69) predicted CA compression. Subjective assessment had the highest AUC (0.78), with 96% negative predictive value. Both distances and qualitative assessment remained independently associated with CA compression when controlling for abnormal coronary anatomy or degree of conduit calcification. CONCLUSIONS CMR can help predict the risk for CA compression during TPVi in RV-PA conduits but cannot completely exclude CA compression. CMR may assist in patient selection and counseling families prior to TPVi, although balloon testing remains essential.
Collapse
Affiliation(s)
- Ryan A Romans
- Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, Missouri, USA.
| | - Jimmy C Lu
- Division of Cardiology, Department of Pediatrics, C.S. Mott Children's Hospital and University of Michigan Congenital Heart Center, Ann Arbor, Michigan, USA
| | - Sowmya Balasubramanian
- Division of Cardiology, Department of Pediatrics, C.S. Mott Children's Hospital and University of Michigan Congenital Heart Center, Ann Arbor, Michigan, USA
| | - Wendy Whiteside
- Division of Cardiology, Department of Pediatrics, C.S. Mott Children's Hospital and University of Michigan Congenital Heart Center, Ann Arbor, Michigan, USA
| | - Sunkyung Yu
- Division of Cardiology, Department of Pediatrics, C.S. Mott Children's Hospital and University of Michigan Congenital Heart Center, Ann Arbor, Michigan, USA
| | - Osamah T Aldoss
- Division of Pediatric Cardiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Aimee K Armstrong
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Brian A Boe
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - David T Balzer
- Division of Cardiology, Department of Pediatrics, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Jason T Christensen
- Division of Cardiology, Department of Pediatrics, Children's Hospital and Medical Center, Omaha, Nebraska, USA
| | - Thomas K Jones
- Division of Cardiology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
| | - Britton Keeshan
- Division of Cardiology, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel McLennan
- Division of Cardiology, Herma Heart Institute at Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - George T Nicholson
- Division of Cardiology, Department of Pediatrics, Monroe Carrell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Neil Patel
- Department of Cardiology, Children's Hospital Los Angeles and The Heart Institute, Los Angeles, California, USA
| | - Arash Salavitabar
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Shabana Shahanavaz
- Division of Cardiology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Patrick M Sullivan
- Department of Cardiology, Children's Hospital Los Angeles and The Heart Institute, Los Angeles, California, USA
| | - Mariel E Turner
- Department of Pediatrics, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jeffrey D Zampi
- Division of Cardiology, Department of Pediatrics, C.S. Mott Children's Hospital and University of Michigan Congenital Heart Center, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Hanser A, Michel J, Hornung A, Sieverding L, Hofbeck M. Coronary Artery Anomalies and Their Impact on the Feasibility of Percutaneous Pulmonary Valve Implantation. Pediatr Cardiol 2022; 43:8-16. [PMID: 34363499 PMCID: PMC8766387 DOI: 10.1007/s00246-021-02684-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Abstract
One of the major obstacles preventing successful percutaneous pulmonary valve implantation (PPVI) is related to the close proximity of coronary artery branches to the expected landing zone. The aim of this study was to assess the frequency of coronary artery anomalies (CAAs) especially those associated with major coronary branches crossing the right ventricular outflow tract (RVOT) and to describe their relevance for the feasibility of percutaneous pulmonary valve implantation (PPVI). In our retrospective single-center study 90 patients were evaluated who underwent invasive testing for PPVI in our institution from 1/2010 to 1/2020. CAAs were identified in seven patients (8%) associated with major branches crossing the RVOT due to origin of the left anterior descending (LAD) or a single coronary artery from the right aortic sinus. In 5/7 patients with CAAs balloon testing of the RVOT and selective coronary angiographies revealed a sufficiently large landing zone distal to the coronary artery branch. While unfavorable RVOT dimensions prevented PPVI in one, PPVI was performed successfully in the remaining four patients. The relatively short landing zone required application of the "folded" melody technique in two patients. All patients are doing well (mean follow-up 3 years). CAAs associated with major coronary branches crossing the RVOT can be expected in about 8% of patients who are potential candidates for PPVI. Since the LAD crossed the RVOT below the plane of the pulmonary valve successful distal implantation of the valve was possible in 4/7 patients. Therefore these coronary anomalies should not be considered as primary contraindications for PPVI.
Collapse
Affiliation(s)
- Anja Hanser
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany
| | - Jörg Michel
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany
| | - Andreas Hornung
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany
| | - Ludger Sieverding
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany
| | - Michael Hofbeck
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany.
| |
Collapse
|
12
|
Coronary compression testing by balloon interrogation during pulmonary valve implantation: room for doubt? Cardiol Young 2021; 31:1419-1425. [PMID: 33563357 DOI: 10.1017/s1047951121000366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate the reliability of balloon coronary compression testing during percutaneous pulmonary valve implantation. BACKGROUND Despite the widespread use of the 'balloon coronary test' as the preferable method to rule out the risk of coronary compression, this adverse event has been described after pulmonary valve implantation where coronary balloon test suggested no risk or low risk, calling into question the accuracy of the test. METHODS We performed a retrospective chart review of 84 patients who underwent pulmonary valve implantation between January 2018 and December 2019 and selected 36 patients whose archived imaging was suitable to perform quantitative analysis of the 'balloon coronary test'. We focused on the spatial disparity between the right ventricular outflow tract position defined by the inflated testing balloon and the eventual implanted valve position, to classify the test as inaccurate or accurate. RESULTS In total, 36.1% of cases were classified as having an inaccurate coronary balloon test. Among the baseline characteristics, right ventricular outflow tract substrate was identified as a significant predictor of test accuracy. Related to this characteristic, the type of testing balloon used and the size of the eventually implanted valve were found to be associated with test accuracy. CONCLUSIONS Based on our findings, balloon coronary testing is not an accurate method of predicting final valve position with respect to fixed structures in the thorax. This may translate to a high false positive rate for the likelihood of coronary compression in pulmonary valve implantation.
Collapse
|
13
|
Contrast-free percutaneous pulmonary valve replacement: a safe approach for valve-in-valve procedures. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2021; 17:200-209. [PMID: 34400923 PMCID: PMC8356834 DOI: 10.5114/aic.2021.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Percutaneous pulmonary valve replacement (PPVI) continues to gather pace in pediatric and adult congenital practice. This is fueled by an expanding repertoire of devices, techniques and equipment to suit the heterogenous anatomical landscape of patients with lesions of the right ventricular outflow tract (RVOT). Contrast-induced nephropathy is a real risk for teenagers and adults with congenital heart disease (CHD). Aim To present a series of patients who underwent PPVI without formal RVOT angiography and propose case selection criteria for patients who may safely benefit from this approach. Material and methods We retrospectively collected PPVI data from the preceding 2 years at our institution identifying patients who had been listed as suitable for consideration for contrast-free PPVI from our multidisciplinary team (MDT) meeting based on predefined criteria. Demographic, clinical, imaging and hemodynamic data were collected. Data were analyzed using SPSS. Results Twenty-one patients were identified. All patients had a technically successful implantation with improvements seen in invasive and echocardiographic hemodynamic measurements. 90% of patients had a bio-prosthetic valve (BPV) in situ prior to PPVI. One patient had a complication which may have been recognized earlier with post-intervention RVOT contrast injection. Conclusions Zero-contrast PPVI is technically feasible and the suitability criteria for those who might benefit are potentially straightforward. The advent of fusion and 3D imaging in cardiac catheterization laboratories is likely to expand our capacity to perform more procedures with less contrast. Patients with bio-prosthetic valves in the pulmonary position may benefit from contrast-free percutaneous pulmonary valve implantation.
Collapse
|
14
|
Ciancarella P, Ciliberti P, Santangelo TP, Secchi F, Stagnaro N, Secinaro A. Noninvasive imaging of congenital cardiovascular defects. Radiol Med 2020; 125:1167-1185. [PMID: 32955650 DOI: 10.1007/s11547-020-01284-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Advances in the treatment have drastically increased the survival rate of congenital heart disease (CHD) patients. Therefore, the prevalence of these patients is growing. Imaging plays a crucial role in the diagnosis and management of this population as a key component of patient care at all stages, especially in those patients who survived into adulthood. Over the last decades, noninvasive imaging techniques, such as cardiac magnetic resonance (CMR) and cardiac computed tomography (CCT), progressively increased their clinical relevance, reaching stronger levels of accuracy and indications in the clinical surveillance of CHD. The current review highlights the main technical aspects and clinical applications of CMR and CCT in the setting of congenital cardiovascular abnormalities, aiming to address a state-of-the-art guidance to every physician and cardiac imager not routinely involved in the field.
Collapse
Affiliation(s)
- Paolo Ciancarella
- Department of Imaging, Advanced Cardiovascular Imaging Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Paolo Ciliberti
- Pediatric Cardiology and Pediatric Cardiac Surgery Department, Bambino Gesù Children's Hospital IRCSS, Rome, Italy
| | - Teresa Pia Santangelo
- Department of Imaging, Advanced Cardiovascular Imaging Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesco Secchi
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, San Donato Milanese, Italy
| | - Nicola Stagnaro
- Radiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Aurelio Secinaro
- Department of Imaging, Advanced Cardiovascular Imaging Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
15
|
Rinaldi E, Sadeghi S, Rajpal S, Boe BA, Daniels C, Cheatham J, Sinha S, Levi DS, Aboulhosn J. Utility of CT Angiography for the Prediction of Coronary Artery Compression in Patients Undergoing Transcatheter Pulmonary Valve Replacement. World J Pediatr Congenit Heart Surg 2020; 11:295-303. [DOI: 10.1177/2150135120905670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objectives: We aimed to evaluate the utility of computed tomography angiography (CTA) for coronary compression (CC) prediction in patients with congenital heart disease undergoing balloon-expandable transcatheter pulmonary valve replacement (TPVR). Background: Coronary compression is a serious complication of TPVR, but the value of preprocedural CTAs to assess CC risk is largely unexplored. Methods: In all, 586 patients underwent TPVR between January 2009 and July 2018. Adults with a pre-TPVR CTA and children with a CTA performed less than one year prior to TPVR were included. Patients with poor CTA image quality or with aborted cases due to reasons other than CC were excluded. Sixty-six patients were finally included. Cardiac anatomy was assessed via multiplanar reconstruction of CTAs. Results: Coronary compression occurred in 9 (14%) of the 66 patients who underwent TPVR. Most CC cases (seven of nine) occurred in patients with conduits. Proximity of the right ventricular outflow tract (RVOT) landing zone to the coronary arteries and to the chest wall was a significant risk factor for compression ( P < .001 and P = .019, respectively). Compression risk increased significantly if patients had an RVOT to coronary artery distance of ≤3 mm ( P < .001) and an RVOT to chest wall distance of ≤8 mm ( P = .026). Anomalous course of coronary arteries was another significant univariate risk factor ( P = .003). Conclusions: Right ventricular outflow tract landing zone distance of ≤3 mm to a coronary artery, landing zone distance of ≤8 mm to the chest wall, and anomalous coronary arteries are associated with increased CC risk. Electrocardiogram gating may not be necessary if coronary arteries are opacified on CTAs. Larger studies are needed to explore and confirm these coronary artery compression risk factors.
Collapse
Affiliation(s)
| | - Soraya Sadeghi
- Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, CA, USA
| | - Saurabh Rajpal
- Nationwide Children’s Hospital/Columbus Ohio Adult Congenital Heart Disease Program, Columbus, OH, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Brian A. Boe
- Nationwide Children’s Hospital/Columbus Ohio Adult Congenital Heart Disease Program, Columbus, OH, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Curt Daniels
- Nationwide Children’s Hospital/Columbus Ohio Adult Congenital Heart Disease Program, Columbus, OH, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, USA
| | - John Cheatham
- Nationwide Children’s Hospital/Columbus Ohio Adult Congenital Heart Disease Program, Columbus, OH, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sanjay Sinha
- Division of Pediatric Cardiology, Mattel Children’s Hospital UCLA, Los Angeles, CA, USA
| | - Daniel S. Levi
- Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, CA, USA
- Division of Pediatric Cardiology, Mattel Children’s Hospital UCLA, Los Angeles, CA, USA
| | - Jamil Aboulhosn
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, CA, USA
- Division of Pediatric Cardiology, Mattel Children’s Hospital UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Kang SL, Armstrong A, Krings G, Benson L. Three-dimensional rotational angiography in congenital heart disease: Present status and evolving future. CONGENIT HEART DIS 2019; 14:1046-1057. [PMID: 31483574 DOI: 10.1111/chd.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 01/17/2023]
Abstract
Three-dimensional rotational angiography (3D-RA) enables volumetric imaging through rotation of the C-arm of an angiographic system and real-time 3D reconstruction during cardiac catheterization procedures. In the field of congenital heart disease (CHD), 3D-RA has gained considerable traction, owing to its capability for enhanced visualization of spatial relationships in complex cardiac morphologies and real time image guidance in an intricate interventional environment. This review provides an overview of the current applications, strengths, and limitations of 3D-RA acquisition in the management of CHD and potential future directions. In addition, issues of dosimetry, radiation exposure, and optimization strategies will be reviewed. Further implementation of 3D-RA will be driven by patient benefits relative to existing 3D imaging capabilities and fusion techniques balanced against radiation exposure.
Collapse
Affiliation(s)
- Sok-Leng Kang
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| | - Aimee Armstrong
- The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gregor Krings
- Children's Heart Center, Utrecht University, Utrecht, Netherlands
| | - Lee Benson
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| |
Collapse
|
17
|
The standing of percutaneous pulmonary valve implantation compared to surgery in a non-preselected cohort with dysfunctional right ventricular outflow tract – Reasons for failure and contraindications. J Cardiol 2019; 74:217-222. [DOI: 10.1016/j.jjcc.2019.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
|
18
|
Apostolopoulou SC, Manginas A, Kelekis NL, Noutsias M. Cardiovascular imaging approach in pre and postoperative tetralogy of Fallot. BMC Cardiovasc Disord 2019; 19:7. [PMID: 30616556 PMCID: PMC6323806 DOI: 10.1186/s12872-018-0996-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/27/2018] [Indexed: 11/10/2022] Open
Abstract
Advances in the medical and surgical management of Tetralogy of Fallot have led to marked increase of the number and age of survivors. Imaging in patients with Tetralogy of Fallot plays a crucial role in the diagnosis and follow up, and essentially guides management and intervention in this entity. This study systematically reviews the imaging modalities used in patients with Tetralogy of Fallot in the evaluation of preoperative and postoperative anatomic and hemodynamic lesions, as well as disease progression in this diagnosis. Various invasive and noninvasive imaging modalities, most commonly echocardiography and cardiovascular magnetic resonance, computed tomography and angiocardiography provide the imaging information required for diagnosis, management and follow up in Tetralogy of Fallot. The choice of the appropriate imaging tool or their combination is guided by the clinical question, the patient's clinical condition and contraindications as well as the strengths and weaknesses of each imaging modality. Tetralogy of Fallot is the most common complex congenital heart disease with long term survivors that need close follow up and complicated management, including multiple surgical and transcatheter interventions. Knowledge of the role and protocols of imaging in Tetralogy of Fallot is extremely important for the clinical as well as the imaging physician in order to optimize patients' management and long-term prognosis.
Collapse
Affiliation(s)
- Sotiria C. Apostolopoulou
- Department of Pediatric Cardiology & Adult Congenital Heart Disease, Onassis Cardiac Surgery Center, 356 Syngrou Ave, 176 74 Athens, GR Greece
| | - Athanassios Manginas
- Interventional Cardiology and Cardiology Department, Mediterraneo Hospital, Athens, Greece
| | - Nikolaos L. Kelekis
- 2nd Department of Radiology, General University Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michel Noutsias
- Mid-German Heart Center, Department of Internal Medicine III (KIM-III), Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| |
Collapse
|
19
|
Magnetic resonance and computed tomography imaging fusion for live guidance of percutaneous pulmonary valve implantation. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2018; 14:413-421. [PMID: 30603031 PMCID: PMC6309845 DOI: 10.5114/aic.2018.79871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Until recently, two-dimensional (2D) angiography was the mainstay of guidance for percutaneous pulmonary valve implantation (PPVI). Recent advances in fusion software have enabled direct fusion of pre-intervention imaging, magnetic resonance imaging (MRI) or computed tomography (CT) scans, to create a reliable three-dimensional (3D) roadmap for procedural guidance. Aim To report initial two-center experience with direct 2D–3D image fusion for live guidance of PPVI with MRI- and CT-derived 3D roadmaps. Material and methods We performed a prospective study on PPVIs guided with the new fusion imaging platform introduced in the last quarter of 2015. Results 3D guidance with an MRI- (n = 14) or CT- (n = 8) derived roadmap was utilized during 22 catheterizations for right ventricular outflow tract balloon sizing (n = 7) or PPVI (n = 15). Successful 2D–3D registration was performed in all but 1 patient. Six (27%) patients required intra-procedural readjustment of the 3D roadmap due to distortion of the anatomy after introduction of a stiff wire. Twenty-one (95%) interventions were successful in the application of 3D imaging. Patients in the CT group received less contrast volume and had a shorter procedural time, though the differences were not statistically significant. Those in the MRI group had significantly lower weight adjusted radiation exposure. Conclusions With intuitive segmentation and direct 2D–3D fusion of MRI or CT datasets, VesselNavigator facilitates PPVI. Our initial data show that utilization of CT-derived roadmaps may lead to less contrast exposure and shorter procedural time, whereas application of MRI datasets may lead to lower radiation exposure.
Collapse
|
20
|
Zablah JE, Fry R, Ross M, Wilson N, Morgan G. Using in vitro model to assess stent-stent interaction in patients with coronary artery compression. J Interv Cardiol 2018; 31:870-877. [DOI: 10.1111/joic.12565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/25/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jenny E. Zablah
- The Heart Institute, Children's Hospital of Colorado; University of Colorado; Aurora Colorado
| | - Rachel Fry
- The Heart Institute, Children's Hospital of Colorado; University of Colorado; Aurora Colorado
- Department of Biomedical Engineering; University of Colorado; Aurora Colorado
| | - Michael Ross
- The Heart Institute, Children's Hospital of Colorado; University of Colorado; Aurora Colorado
| | - Neil Wilson
- The Heart Institute, Children's Hospital of Colorado; University of Colorado; Aurora Colorado
| | - Gareth Morgan
- The Heart Institute, Children's Hospital of Colorado; University of Colorado; Aurora Colorado
| |
Collapse
|
21
|
Caimi A, Sturla F, Pluchinotta FR, Giugno L, Secchi F, Votta E, Carminati M, Redaelli A. Prediction of stenting related adverse events through patient-specific finite element modelling. J Biomech 2018; 79:135-146. [PMID: 30139536 DOI: 10.1016/j.jbiomech.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
Right ventricular outflow tract (RVOT) calcific obstruction is frequent after homograft conduit implantation to treat congenital heart disease. Stenting and percutaneous pulmonary valve implantation (PPVI) can relieve the obstruction and prolong the conduit lifespan, but require accurate pre-procedural evaluation to minimize the risk of coronary artery (CA) compression, stent fracture, conduit injury or arterial distortion. Herein, we test patient-specific finite element (FE) modeling as a tool to assess stenting feasibility and investigate clinically relevant risks associated to the percutaneous intervention. Three patients undergoing attempted PPVI due to calcific RVOT conduit failure were enrolled; the calcific RVOT, the aortic root and the proximal CA were segmented on CT scans for each patient. We numerically reproduced RVOT balloon angioplasty to test procedure feasibility and the subsequent RVOT pre-stenting expanding the stent through a balloon-in-balloon delivery system. Our FE framework predicted the occurrence of CA compression in the patient excluded from the real procedure. In the two patients undergoing RVOT stenting, numerical results were consistent with intraprocedural in-vivo fluoroscopic evidences. Furthermore, it quantified the stresses on the stent and on the relevant native structures, highlighting their marked dependence on the extent, shape and location of the calcific deposits. Stent deployment induced displacement and mechanical loading of the calcific deposits, also impacting on the adjacent anatomical structures. This novel workflow has the potential to tackle the analysis of complex RVOT clinical scenarios, pinpointing the procedure impact on the dysfunctional anatomy and elucidating potential periprocedural complications.
Collapse
Affiliation(s)
- Alessandro Caimi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy.
| | - Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesca Romana Pluchinotta
- Department of Paediatric Cardiology and Adult Congenital Heart Disease, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Luca Giugno
- Department of Paediatric Cardiology and Adult Congenital Heart Disease, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Secchi
- Department of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Mario Carminati
- Department of Paediatric Cardiology and Adult Congenital Heart Disease, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
22
|
Di Salvo G, Miller O, Babu Narayan S, Li W, Budts W, Valsangiacomo Buechel ER, Frigiola A, van den Bosch AE, Bonello B, Mertens L, Hussain T, Parish V, Habib G, Edvardsen T, Geva T, Baumgartner H, Gatzoulis MA, Delgado V, Haugaa KH, Lancellotti P, Flachskampf F, Cardim N, Gerber B, Masci PG, Donal E, Gimelli A, Muraru D, Cosyns B. Imaging the adult with congenital heart disease: a multimodality imaging approach—position paper from the EACVI. Eur Heart J Cardiovasc Imaging 2018; 19:1077-1098. [DOI: 10.1093/ehjci/jey102] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Di Salvo
- Department of Adult Congenital Heart Disease, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, Sydney Street, London, UK
| | - Owen Miller
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, Westminster Bridge Road, London, UK
| | - Sonya Babu Narayan
- Department of Adult Congenital Heart Disease, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, Sydney Street, London, UK
| | - Wei Li
- Department of Adult Congenital Heart Disease, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, Sydney Street, London, UK
| | - Werner Budts
- Department Cardiovascular Sciences (KU Leuven), Congenital and Structural Cardiology (CSC UZ Leuven), Leuven, Belgium
| | | | - Alessandra Frigiola
- Adult Congenital Heart Disease, Guy's and St Thomas' Hospital, Westminster Bridge Road, London, UK
| | | | - Beatrice Bonello
- Department of Paediatric Cardiology, Great Ormond Street Hospital, London, UK
| | - Luc Mertens
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children and University of Toronto, SickKids, 555 University Avenue Toronto, Ontario, Canada
| | - Tarique Hussain
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Departments of Paediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | | | - Gilbert Habib
- APHM, La Timone Hospital, Cardiology Department, Boulevard Jean Moulin, Marseille, France
| | - Thor Edvardsen
- Department of Cardiology, Sognsvannsveien 20, Oslo, Norvegia
| | - Tal Geva
- Department of Cardiology, 300 Longwood Avenue, Farley, Boston, Massachusetts, USA
| | | | - Michael A Gatzoulis
- Department of Adult Congenital Heart Disease, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, Sydney Street, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Morgan GJ. Pulmonary Regurgitation- Is the Future Percutaneous or Surgical? Front Pediatr 2018; 6:184. [PMID: 30042933 PMCID: PMC6048258 DOI: 10.3389/fped.2018.00184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022] Open
Abstract
For decades, surgical replacement of the pulmonary valve has been seen as the gold-standard technique. Until the advent of Medtronic's Melody valve, it was the only option. Whilst radical changes in surgical techniques have not been forthcoming, rapid and substantial developments in the techniques and available technology for percutaneous valves now cause us to ask if the gold-standard moniker now belongs in the cath lab. This manuscript explores the recent history and future of a revolution in this large area of congenital cardiac practice.
Collapse
Affiliation(s)
- Gareth J Morgan
- Congenital Interventional Cardiologist, Heart Institute, Children's Hospital of Colorado, University Colorado Hospital, Colorado University, Denver, CO, United States
| |
Collapse
|