1
|
K Rahmath MR, Durward A. Pulmonary artery sling: An overview. Pediatr Pulmonol 2023; 58:1299-1309. [PMID: 36790334 DOI: 10.1002/ppul.26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Pulmonary artery sling is a rare childhood vascular tracheobronchial compression syndrome that is frequently associated with tracheal stenosis. Consequently, neonates or infants may present with critical airway obstruction if there is long segment airway narrowing and complete rings. Rapid diagnosis of this cardiac vascular malformation and evaluation of the extent and severity of airway involvement is essential to plan surgery, typically a slide tracheoplasty to relieve critical airway obstruction. Long term outcome can be excellent following surgical repair of the stenosed airway and reimplantation of the left pulmonary artery. In this review we focus on the embryology, diagnostic workup, airway investigations and management for this rare but challenging congenital condition.
Collapse
Affiliation(s)
| | - Andrew Durward
- Pediatric cardiac intensive care, Sidra hospital, Doha, Qatar
| |
Collapse
|
2
|
Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, Muthurangu V, Taylor M, Valsangiacomo-Buechel E, Wilhelm C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the use of cardiovascular magnetic resonance in pediatric congenital and acquired heart disease : Endorsed by The American Heart Association. J Cardiovasc Magn Reson 2022; 24:37. [PMID: 35725473 PMCID: PMC9210755 DOI: 10.1186/s12968-022-00843-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of CMR in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of CMR in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Collapse
Affiliation(s)
- Mark A Fogel
- Departments of Pediatrics (Cardiology) and Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Shaftkat Anwar
- Department of Pediatrics (Cardiology) and Radiology, The University of California-San Francisco School of Medicine, San Francisco, USA
| | - Craig Broberg
- Division of Cardiovascular Medicine, Oregon Health and Sciences University, Portland, USA
| | - Lorna Browne
- Department of Radiology, University of Colorado, Denver, USA
| | - Taylor Chung
- Department of Radiology and Biomedical Imaging, The University of California-San Francisco School of Medicine, San Francisco, USA
| | - Tiffanie Johnson
- Department of Pediatrics (Cardiology), Indiana University School of Medicine, Indianapolis, USA
| | - Vivek Muthurangu
- Department of Pediatrics (Cardiology), University College London, London, UK
| | - Michael Taylor
- Department of Pediatrics (Cardiology), University of Cincinnati School of Medicine, Cincinnati, USA
| | | | - Carolyn Wilhelm
- Department of Pediatrics (Cardiology), University Hospitals-Cleveland, Cleaveland, USA
| |
Collapse
|
3
|
Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, Muthurangu V, Taylor M, Valsangiacomo-Buechel E, Wilhelm C. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the Use of Cardiac Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association. Circ Cardiovasc Imaging 2022; 15:e014415. [PMID: 35727874 PMCID: PMC9213089 DOI: 10.1161/circimaging.122.014415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/12/2022] [Indexed: 01/15/2023]
Abstract
Cardiovascular magnetic resonance has been utilized in the management and care of pediatric patients for nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, an up-to-date, large, stand-alone guidance work for the use of cardiovascular magnetic resonance in pediatric congenital 36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This guidelines document outlines the use of cardiovascular magnetic resonance in this patient population for a significant number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an expansive list of many common clinical issues encountered in daily practice.
Collapse
Affiliation(s)
- Mark A. Fogel
- Departments of Pediatrics (Cardiology) and Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, (M.A.F.)
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA, (M.A.F.)
| | - Shaftkat Anwar
- Department of Pediatrics (Cardiology) and Radiology, The University of California-San Francisco School of Medicine, San Francisco, USA, (S.A.)
| | - Craig Broberg
- Division of Cardiovascular Medicine, Oregon Health and Sciences University, Portland, USA, (C.B.)
| | - Lorna Browne
- Department of Radiology, University of Colorado, Denver, USA, (L.B.)
| | - Taylor Chung
- Department of Radiology and Biomedical Imaging, The University of California-San Francisco School of Medicine, San Francisco, USA, (T.C.)
| | - Tiffanie Johnson
- Department of Pediatrics (Cardiology), Indiana University School of Medicine, Indianapolis, USA, (T.J.)
| | - Vivek Muthurangu
- Department of Pediatrics (Cardiology), University College London, London, UK, (V.M.)
| | - Michael Taylor
- Department of Pediatrics (Cardiology), University of Cincinnati School of Medicine, Cincinnati, USA, (M.T.)
| | | | - Carolyn Wilhelm
- Department of Pediatrics (Cardiology), University Hospitals-Cleveland, Cleaveland, USA (C.W.)
| |
Collapse
|
4
|
Liszewski MC, Ciet P, Lee EY. MR Imaging of Lungs and Airways in Children:. Magn Reson Imaging Clin N Am 2019; 27:201-225. [DOI: 10.1016/j.mric.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
|
6
|
Mitchell FM, Prasad SK, Greil GF, Drivas P, Vassiliou VS, Raphael CE. Cardiovascular magnetic resonance: Diagnostic utility and specific considerations in the pediatric population. World J Clin Pediatr 2016; 5:1-15. [PMID: 26862497 PMCID: PMC4737683 DOI: 10.5409/wjcp.v5.i1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/10/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance is a non-invasive imaging modality which is emerging as important tool for the investigation and management of pediatric cardiovascular disease. In this review we describe the key technical and practical differences between scanning children and adults, and highlight some important considerations that must be taken into account for this patient population. Using case examples commonly seen in clinical practice, we discuss the important clinical applications of cardiovascular magnetic resonance, and briefly highlight key future developments in this field.
Collapse
|
7
|
Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI. Cardiol Young 2015; 25:819-38. [PMID: 25739865 DOI: 10.1017/s1047951115000025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-making.
Collapse
|
8
|
Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S, Eichhorn J, Sarikouch S, Greil GF, Beerbaum P, Bucciarelli-Ducci C, Bonello B, Sieverding L, Schwitter J, Helbing WA, Galderisi M, Miller O, Sicari R, Rosa J, Thaulow E, Edvardsen T, Brockmeier K, Qureshi S, Stein J. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI. Eur Heart J Cardiovasc Imaging 2015; 16:281-97. [PMID: 25712078 DOI: 10.1093/ehjci/jeu129] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-making.
Collapse
|
9
|
Liszewski MC, Hersman FW, Altes TA, Ohno Y, Ciet P, Warfield SK, Lee EY. Magnetic resonance imaging of pediatric lung parenchyma, airways, vasculature, ventilation, and perfusion: state of the art. Radiol Clin North Am 2013; 51:555-82. [PMID: 23830786 DOI: 10.1016/j.rcl.2013.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Magnetic resonance (MR) imaging is a noninvasive imaging modality, particularly attractive for pediatric patients given its lack of ionizing radiation. Despite many advantages, the physical properties of the lung (inherent low signal-to-noise ratio, magnetic susceptibility differences at lung-air interfaces, and respiratory and cardiac motion) have posed technical challenges that have limited the use of MR imaging in the evaluation of thoracic disease in the past. However, recent advances in MR imaging techniques have overcome many of these challenges. This article discusses these advances in MR imaging techniques and their potential role in the evaluation of thoracic disorders in pediatric patients.
Collapse
Affiliation(s)
- Mark C Liszewski
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 330 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Ntsinjana HN, Hughes ML, Taylor AM. The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn Reson 2011; 13:51. [PMID: 21936913 PMCID: PMC3210092 DOI: 10.1186/1532-429x-13-51] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/21/2011] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) has expanded its role in the diagnosis and management of congenital heart disease (CHD) and acquired heart disease in pediatric patients. Ongoing technological advancements in both data acquisition and data presentation have enabled CMR to be integrated into clinical practice with increasing understanding of the advantages and limitations of the technique by pediatric cardiologists and congenital heart surgeons. Importantly, the combination of exquisite 3D anatomy with physiological data enables CMR to provide a unique perspective for the management of many patients with CHD. Imaging small children with CHD is challenging, and in this article we will review the technical adjustments, imaging protocols and application of CMR in the pediatric population.
Collapse
Affiliation(s)
- Hopewell N Ntsinjana
- Centre for Cardiovascular MR, UCL Institute of Cardiovascular Sciences, Great Ormond Street Hospital for Children, London, UK
| | - Marina L Hughes
- Centre for Cardiovascular MR, UCL Institute of Cardiovascular Sciences, Great Ormond Street Hospital for Children, London, UK
| | - Andrew M Taylor
- Centre for Cardiovascular MR, UCL Institute of Cardiovascular Sciences, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
11
|
Vera de Pedro E, Martínez Ayúcar M, Marín Gonzalo A, Galdeano Miranda JM, Luis García M. [Complete vascular rings]. An Pediatr (Barc) 2008; 69:52-5. [PMID: 18620678 DOI: 10.1157/13124220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The complete vascular rings, embryological anomalies of the aortic arch and great vessels, are frequently incidental findings, although patients with significant anomalies can present with upper airway and oesophagus compression, resulting in non-cardiac morbidity. The diagnostic needs high clinical suspicion. We describe six cases, with a mean age of two and a half months at diagnosis. The objective of our review is to describe the type of complete vascular ring (double aortic arch, right circumflex aortic arch and right aortic arch with aberrant left subclavian artery and left ligamentum arteriosus), the most common symptoms (respiratory symptoms including constant high-pitched, aggravated crying) and invasive and non-invasive diagnostic procedures (esophagograms, CT, MRI).
Collapse
Affiliation(s)
- E Vera de Pedro
- Servicio de Pediatría, Hospital de Txagorritxu, Vitoria, Spain.
| | | | | | | | | |
Collapse
|
12
|
Abstract
This is a case report on the use of cardiovascular magnetic resonance imaging to diagnose vascular ring due to double aortic arch in an adult presenting with an abnormal chest X-ray. The experience in this case and the literature review identify the benefits of using cardiovascular magnetic resonance imaging to clarify complex aortic arch anatomy.
Collapse
Affiliation(s)
- Henryk Kafka
- Adult Congenital Heart Center, Royal Brompton Hospital, London, UK.
| | | | | |
Collapse
|
13
|
|
14
|
|
15
|
Greil GF, Wolf I, Kuettner A, Fenchel M, Miller S, Martirosian P, Schick F, Oppitz M, Meinzer HP, Sieverding L. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol 2007; 96:176-85. [PMID: 17225916 DOI: 10.1007/s00392-007-0482-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Precise knowledge of cardiac anatomy is mandatory for diagnosis and treatment of congenital heart disease. Modern imaging techniques allow high resolution three-dimensional (3D) imaging of the heart and great vessels. In this study stereolithography was evaluated for 3D reconstructions of multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) data. METHODS A plastinated heart specimen was scanned with MDCT and after segmentation a stereolithographic (STL) model was produced with laser sinter technique. After scanning the STL model with MDCT these data were compared with those of the original specimen after rigid registration using the iterative closest points algorithm (ICP). The two surfaces of the original specimen and STL model were matched and the symmetric mean distance was calculated. Additionally, the heart and great vessels of patients (age range 41 days-21 years) with congenital heart anomalies were imaged with MDCT (n=2) or free breathing steady, state free-precession MRI (n=3). STL models were produced from these datasets and the cardiac segments were analyzed by two independent observers. RESULTS All cardiac structures of the heart specimen were reconstructed as a STL model within sub-millimeter resolution (mean surface distance 0.27+/-0.76 mm). Cardiac segments of the STL patient models were correctly analyzed by two independent observers compared to the original 3D datasets, echocardiography (n=5), x-ray angiography (n=5), and surgery (n=4). CONCLUSIONS High resolution MDCT or MRI 3D datasets can be accurately reconstructed using laser sinter technique. Teaching, research and preoperative planning may be facilitated in the future using this technique.
Collapse
Affiliation(s)
- G F Greil
- Department of Pediatric Cardiology, Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ley S, Zaporozhan J, Arnold R, Eichhorn J, Schenk JP, Ulmer H, Kreitner KF, Kauczor HU. Preoperative assessment and follow-up of congenital abnormalities of the pulmonary arteries using CT and MRI. Eur Radiol 2006; 17:151-62. [PMID: 16799783 DOI: 10.1007/s00330-006-0300-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/09/2006] [Accepted: 04/18/2006] [Indexed: 12/01/2022]
Abstract
Congenital heart disease (CHD), including complex anomalies of the pulmonary arteries, are now earlier diagnosed and treated. Due to improvements in interventional and surgical therapy, the number of patients with the need for follow-up examinations is increasing. Pre- and postinterventional imaging should be done as gently as possible, avoiding invasive techniques if possible. With the technical improvement of multidetector-row computed tomography (MDCT) and magnetic resonance imaging (MRI), both techniques are increasingly used for noninvasive assessment of the pulmonary vasculature in children with CHD. Knowledge of the most common diseases affecting the pulmonary vasculature and the kind of surgical and interventional procedures is essential for optimal imaging planning. This is especially important because interventions can be positively influenced by high-quality imaging. Therefore, the most common diseases and procedures are described and imaging modality of choice and important image findings are discussed.
Collapse
Affiliation(s)
- Sebastian Ley
- Department of Pediatric Radiology, University Children's Hospital, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hernanz-Schulman M. Vascular rings: a practical approach to imaging diagnosis. Pediatr Radiol 2005; 35:961-79. [PMID: 16052335 DOI: 10.1007/s00247-005-1529-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/30/2005] [Accepted: 05/23/2005] [Indexed: 11/24/2022]
Abstract
Vascular ring is a term given to a combination of vascular and often ligamentous structures that encircle the trachea and esophagus. The diagnosis can be difficult because clinical symptoms can be variable and nonspecific, and because vascular arrangements that result in vascular rings in some patients do not form vascular rings in others. The clinical manifestations comprise a spectrum ranging from no symptoms to feeding difficulties, repeated infections, and life-threatening respiratory compromise. The diagnosis of vascular ring can be made by various imaging modalities. Therefore it is imperative that pediatric radiologists be familiar with the anatomic variants that can result in a symptomatic ring needing surgical repair, their imaging appearance and the appropriate imaging algorithm. The goals of this manuscript are to describe common and uncommon types of vascular rings, to simplify the differential diagnosis, and to outline the imaging options for accurate diagnosis.
Collapse
Affiliation(s)
- Marta Hernanz-Schulman
- Diagnostic Imaging, Vanderbilt Children's Hospital, 2200 Children's Way, Nashville, TN 37232-9700, USA.
| |
Collapse
|