1
|
Jo Y, Kim J, Park CH, Lee JW, Hur JH, Yang DH, Lee BY, Im DJ, Hong SJ, Kim EY, Park EA, Kim PK, Yong HS. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol. Korean J Radiol 2020; 20:1313-1333. [PMID: 31464111 PMCID: PMC6715561 DOI: 10.3348/kjr.2019.0398] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging is widely used in many areas of cardiovascular disease assessment. This is a practical, standard CMR protocol for beginners that is designed to be easy to follow and implement. This protocol guideline is based on previously reported CMR guidelines and includes sequence terminology used by vendors, essential MR physics, imaging planes, field strength considerations, MRI-conditional devices, drugs for stress tests, various CMR modules, and disease/symptom-based protocols based on a survey of cardiologists and various appropriate-use criteria. It will be of considerable help in planning and implementing tests. In addressing CMR usage and creating this protocol guideline, we particularly tried to include useful tips to overcome various practical issues and improve CMR imaging. We hope that this document will continue to standardize and simplify a patient-based approach to clinical CMR and contribute to the promotion of public health.
Collapse
Affiliation(s)
- Yeseul Jo
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - JeongJae Kim
- Department of Radiology, Jeju National University Hospital, Jeju, Korea
| | - Chul Hwan Park
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Jae Wook Lee
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jee Hye Hur
- Department of Radiology, Hanil General Hospital, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bae Young Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Jin Im
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Hong
- Department of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Eun Young Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Ah Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Pan Ki Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, Seoul, Korea.
| |
Collapse
|
2
|
Frank L, Dillman JR, Parish V, Mueller GC, Kazerooni EA, Bell A, Attili AK. Cardiovascular MR Imaging of Conotruncal Anomalies. Radiographics 2010; 30:1069-94. [DOI: 10.1148/rg.304095158] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Maya L, Villarreal FJ. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Mol Cell Cardiol 2009; 48:524-9. [PMID: 19595694 DOI: 10.1016/j.yjmcc.2009.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 12/13/2022]
Abstract
In diabetes mellitus, alterations in cardiac structure/function in the absence of ischemic heart disease, hypertension or other cardiac pathologies are termed diabetic cardiomyopathy. In the United States, the prevalence of diabetes mellitus continues to rise and the disease currently affects about 8% of the general population. Hence, the use of appropriate diagnostic strategies for diabetic cardiomyopathy, which may help correctly identify the disease at early stages and implement suitable corrective therapies is imperative. Currently, there is no single diagnostic method for the identification of diabetic cardiomyopathy. Diabetic cardiomyopathy is known to induce changes in cardiac structure such as, myocardial hypertrophy, fibrosis and fat droplet deposition. Early changes in cardiac function are typically manifested as abnormal diastolic function that with time leads to loss of contractile function. Echocardiography based methods currently stand as the preferred diagnostic approach for diabetic cardiomyopathy, due to its wide availability and economical use. In addition to conventional techniques, magnetic resonance imaging and spectroscopy along with contrast agents are now leading new approaches in the diagnosis of myocardial fibrosis, and cardiac and hepatic metabolic changes. These strategies can be complemented with serum biomarkers so they can offer a clear picture as to diabetes-induced changes in cardiac structure/function even at very early stages of the disease. This review article intends to provide a summary of experimental and routine tools currently available to diagnose diabetic cardiomyopathy induced changes in cardiac structure/function. These tools can be reliably used in either experimental models of diabetes or for clinical applications.
Collapse
Affiliation(s)
- Lisandro Maya
- University of California, San Diego, Department of Medicine, San Diego, CA, USA
| | | |
Collapse
|