2
|
Marie E, Navallas M, Katz DS, Farajirad E, Punnett A, Davda S, Shammas A, Oudjhane K, Vali R. Non-Hodgkin Lymphoma Imaging Spectrum in Children, Adolescents, and Young Adults. Radiographics 2022; 42:1214-1238. [PMID: 35714040 DOI: 10.1148/rg.210162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In children, adolescents, and young adults (CAYA), non-Hodgkin lymphoma (NHL) is characterized by various age-related dissimilarities in tumor aggressiveness, prevailing pathologic subtypes, and imaging features, as well as potentially different treatment outcomes. Understanding the imaging spectrum of NHL in CAYA with particular attention to children and adolescents is critical for radiologists to support the clinical decision making by the treating physicians and other health care practitioners. The authors discuss the currently performed imaging modalities including radiography, US, CT, MRI, and PET in the diagnosis, staging, and assessment of the treatment response. Familiarity with diagnostic imaging challenges during image acquisition, processing, and interpretation is required when managing patients with NHL. The authors describe potentially problematic and life-threatening scenarios that require prompt management. Moreover, the authors address the unprecedented urge to understand the imaging patterns of possible treatment-related complications of the therapeutic agents used in NHL clinical trials and in practice. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Eman Marie
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| | - María Navallas
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| | - Douglas S Katz
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| | - Elnaz Farajirad
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| | - Angela Punnett
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| | - Sunit Davda
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| | - Amer Shammas
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| | - Kamaldine Oudjhane
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| | - Reza Vali
- From the Department of Diagnostic Imaging, McMaster Children's Hospital, McMaster University, 1200 Main St W, Hamilton, ON, Canada L8N 3Z5 (E.M.); Department of Diagnostic Imaging, Hospital Universitario 12 de Octubre, Madrid, Spain (M.N.); Department of Radiology, NYU Winthrop Hospital, Mineola, NY (D.S.K.); LHSC Victoria Hospital, Western Ontario University, London, ON, Canada (E.F.); Department of Pediatrics, Division of Hematology/Oncology (A.P.), Department of Diagnostic Imaging (K.O), Division of Nuclear Medicine (A.S., R.V.), The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Great Ormond Street Hospital for Children, NHS, London, England (S.D.); and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (K.O.)
| |
Collapse
|
3
|
Kwee TC, de Klerk JMH, Nix M, Heggelman BGF, Dubois SV, Adams HJA. Benign Bone Conditions That May Be FDG-avid and Mimic Malignancy. Semin Nucl Med 2017; 47:322-351. [PMID: 28583274 DOI: 10.1053/j.semnuclmed.2017.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Positron emission tomography with the radiotracer 18F-fluoro-2-deoxy-d-glucose (FDG) plays an important role in the evaluation of bone pathology. However, FDG is not a cancer-specific agent, and knowledge of the differential diagnosis of benign FDG-avid bone alterations that may resemble malignancy is important for correct patient management, including the avoidance of unnecessary additional invasive tests such as bone biopsy. This review summarizes and illustrates the spectrum of benign bone conditions that may be FDG-avid and mimic malignancy, including osteomyelitis, bone lesions due to benign systemic diseases (Brown tumor, Erdheim-Chester disease, Gaucher disease, gout and other types of arthritis, Langerhans cell histiocytosis, and sarcoidosis), benign primary bone lesions (bone cysts, chondroblastoma, chondromyxoid fibroma, desmoplastic fibroma, enchondroma, giant cell tumor and granuloma, hemangioma, nonossifying fibroma, and osteoid osteoma and osteoblastoma), and a group of miscellaneous benign bone conditions (post bone marrow biopsy or harvest status, bone marrow hyperplasia, fibrous dysplasia, fractures, osteonecrosis, Paget disease of bone, particle disease, and Schmorl nodes). Several ancillary clinical and imaging findings may be helpful in discriminating benign from malignant FDG-avid bone lesions. However, this distinction is sometimes difficult or even impossible, and tissue acquisition will be required to establish the final diagnosis.
Collapse
Affiliation(s)
- Thomas C Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands.
| | - John M H de Klerk
- Department of Nuclear Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Maarten Nix
- Department of Radiology, Meander Medical Center, Amersfoort, The Netherlands
| | - Ben G F Heggelman
- Department of Radiology, Meander Medical Center, Amersfoort, The Netherlands
| | - Stefan V Dubois
- Department of Pathology, Meander Medical Center, Amersfoort, The Netherlands
| | - Hugo J A Adams
- Department of Radiology and Nuclear Medicine, Deventer Ziekenhuis, Deventer, The Netherlands
| |
Collapse
|