1
|
Weiss EK, Baraboo J, Rigsby CK, Robinson JD, Ma L, Falcão MBL, Roy CW, Stuber M, Markl M. Respiratory-resolved five-dimensional flow cardiovascular magnetic resonance : In-vivo validation and respiratory-dependent flow changes in healthy volunteers and patients with congenital heart disease. J Cardiovasc Magn Reson 2024; 26:101077. [PMID: 39098573 PMCID: PMC11417305 DOI: 10.1016/j.jocmr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND This study aimed to validate respiratory-resolved five-dimensional (5D) flow cardiovascular magnetic resonance (CMR) against real-time two-dimensional (2D) phase-contrast MRI, assess the impact of number of respiratory states, and measure the impact of respiration on hemodynamics in congenital heart disease (CHD) patients. METHODS Respiratory-resolved 5D flow MRI-derived net and peak flow measurements were compared to real-time 2D phase-contrast MRI-derived measurements in 10 healthy volunteers. Pulmonary-to-systemic flow ratios (Qp:Qs) were measured in 19 CHD patients and aortopulmonary collateral burden was measured in 5 Fontan patients. Additionally, the impact of number of respiratory states on measured respiratory-driven net flow changes was investigated in 10 healthy volunteers and 19 CHD patients (shunt physiology, n = 11, single ventricle disease [SVD], n = 8). RESULTS There was good agreement between 5D flow MRI and real-time 2D phase-contrast-derived net and peak flow. Respiratory-driven changes had a good correlation (rho = 0.64, p < 0.001). In healthy volunteers, fewer than four respiratory states reduced measured respiratory-driven flow changes in veins (5.2 mL/cycle, p < 0.001) and arteries (1.7 mL/cycle, p = 0.05). Respiration drove substantial venous net flow changes in SVD (64% change) and shunt patients (57% change). Respiration had significantly greater impact in SVD patients compared to shunt patients in the right and left pulmonary arteries (46% vs 15%, p = 0.003 and 59% vs 20%, p = 0.002). Qp:Qs varied by 37 ± 24% over respiration in SVD patients and 12 ± 20% in shunt patients. Aortopulmonary collateral burden varied by 118 ± 84% over respiration in Fontan patients. The smallest collateral burden was measured during active inspiration in all patients and the greatest burden was during active expiration in four of five patients. Reduced respiratory resolution blunted measured flow changes in the caval veins of shunt and SVD patients (p < 0.005). CONCLUSIONS Respiratory-resolved 5D flow MRI measurements agree with real-time 2D phase contrast. Venous measurements are sensitive to number of respiratory states, whereas arterial measurements are more robust. Respiration has a substantial impact on caval vein flow, Qp:Qs, and collateral burden in CHD patients.
Collapse
Affiliation(s)
- Elizabeth K Weiss
- Department of Radiology, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.
| | - Justin Baraboo
- Department of Radiology, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Cynthia K Rigsby
- Department of Radiology, Northwestern University, Chicago, Illinois, USA; Department of Medical Imaging, Ann & Robert Lurie Children's Hospital, Chicago, Illinois, USA
| | - Joshua D Robinson
- Department of Cardiology, Ann & Robert Lurie Children's Hospital, Chicago, Illinois, USA
| | - Liliana Ma
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Mariana B L Falcão
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michael Markl
- Department of Radiology, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
2
|
Ait Ali L, Martini N, Listo E, Valenti E, Sotelo J, Salvadori S, Passino C, Monteleone A, Stagnaro N, Trocchio G, Marrone C, Raimondi F, Catapano G, Festa P. Impact of 4D-Flow CMR Parameters on Functional Evaluation of Fontan Circulation. Pediatr Cardiol 2024; 45:998-1006. [PMID: 38519622 PMCID: PMC11056328 DOI: 10.1007/s00246-024-03446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 03/25/2024]
Abstract
We sought to evaluate the potential clinical role of 4D-flow cardiac magnetic resonance (CMR)-derived energetics and flow parameters in a cohort of patients' post-Fontan palliation. In patients with Fontan circulation who underwent 4D-Flow CMR, streamlines distribution was evaluated, as well a 4D-flow CMR-derived energetics parameters as kinetic energy (KE) and energy loss (EL) normalized by volume. EL/KE index as a marker of flow efficiency was also calculated. Cardiopulmonary exercise test (CPET) was also performed in a subgroup of patients. The population study included 55 patients (mean age 22 ± 11 years). The analysis of the streamlines revealed a preferential distribution of the right superior vena cava flow for the right pulmonary artery (62.5 ± 35.4%) and a mild preferential flow for the left pulmonary artery (52.3 ± 40.6%) of the inferior vena cave-pulmonary arteries (IVC-PA) conduit. Patients with heart failure (HF) presented lower IVC/PA-conduit flow (0.75 ± 0.5 vs 1.3 ± 0.5 l/min/m2, p = 0.004) and a higher mean flow-jet angle of the IVC-PA conduit (39.2 ± 22.8 vs 15.2 ± 8.9, p < 0.001) than the remaining patients. EL/KE index correlates inversely with VO2/kg/min: R: - 0.45, p = 0.01 peak, minute ventilation (VE) R: - 0.466, p < 0.01, maximal voluntary ventilation: R:0.44, p = 0.001 and positively with the physiological dead space to the tidal volume ratio (VD/VT) peak: R: 0.58, p < 0.01. From our data, lower blood flow in IVC/PA conduit and eccentric flow was associated with HF whereas higher EL/KE index was associated with reduced functional capacity and impaired lung function. Larger studies are needed to confirm our results and to further improve the prognostic role of the 4D-Flow CMR in this challenging population.
Collapse
Affiliation(s)
- Lamia Ait Ali
- Institute of Clinical Physiology, National Research Council, Via Aurelia Sud, 54100, Massa, Pisa, Italy.
- Gabriele Monasterio Foundation, Pisa, Massa, Italy.
| | | | - Elisa Listo
- Azienda Ospedaliera ASL, 3-Ospedale Villascassi, Genoa, Italy
| | - Elisa Valenti
- Institute of Clinical Physiology, National Research Council, Via Aurelia Sud, 54100, Massa, Pisa, Italy
| | - Julio Sotelo
- Departamento de Informática, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Stefano Salvadori
- Institute of Clinical Physiology, National Research Council, Via Aurelia Sud, 54100, Massa, Pisa, Italy
| | | | | | | | - Gianluca Trocchio
- ASST Ospedale Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo BG, Bergamo, Italy
| | | | - Francesca Raimondi
- ASST Ospedale Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo BG, Bergamo, Italy.
| | | | | |
Collapse
|
3
|
Kratz T, Gaukstern L, Wiebe W, Müller N, Freudenthal N, Breuer J, Luetkens J, Hart C. Pulmonary blood flow in children with univentricular heart and unilateral diaphragmatic paralysis. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 38:ivae011. [PMID: 38216538 PMCID: PMC10809914 DOI: 10.1093/icvts/ivae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
OBJECTIVES Spontaneous breathing has an important effect on pulmonary arterial blood flow in patients with Glenn/Fontan circulation. Unilateral diaphragmatic paralysis (DP) is a frequent complication after heart surgery in congenital heart disease. The aim of this study was to investigate the influence of unilateral DP on blood flow distribution in the pulmonary arteries with Glenn/Fontan circulation. METHODS Magnetic resonance phase-contrast imaging was used to evaluate stroke volume index (SVI) in the left and right pulmonary arteries in patients with Glenn/Fontan circulation with unilateral DP. Data for 18 patients with univentricular heart and unilateral DP were analysed, 8 in the Glenn stage and 10 in the Fontan stage. Ten patients had right-sided DP, and 8 had left-sided DP. A diaphragmatic plication was performed in 7 patients. The control group consisted of 36 patients with Glenn (n = 16)/Fontan (n = 20) circulation without DP. RESULTS In both left- and right-sided DP, the SVI to the ipsilateral side was significantly lower than in controls [2.81 (1.45-4.50) ml/m2 left vs 11.97 (7.36-16.37) ml/m2 in controls, P < 0.0002; 8.2 (4.49-12.64) ml/m2 with right vs 12.64 (9.66-16.61) ml/m2 in controls; P = 0.0284]. The SVI to the contralateral side showed a slight but non-significant increase in the presence of unilateral DP. CONCLUSIONS Unilateral DP in patients with Glenn/Fontan circulation has a negative impact on pulmonary arterial SVI on the side of the paralysis.
Collapse
Affiliation(s)
- Tobias Kratz
- Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Lisa Gaukstern
- Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Walter Wiebe
- Department of Paediatric Cardiology, German Paediatric Heart Centre, Sankt Augustin, Germany
| | - Nicole Müller
- Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Noa Freudenthal
- Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Johannes Breuer
- Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Julian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Christopher Hart
- Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Burkhardt BEU, Kellenberger CJ, Callaghan FM, Valsangiacomo Buechel ER, Geiger J. Flow evaluation software for four-dimensional flow MRI: a reliability and validation study. LA RADIOLOGIA MEDICA 2023; 128:1225-1235. [PMID: 37620674 PMCID: PMC10547653 DOI: 10.1007/s11547-023-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Four-dimensional time-resolved phase-contrast cardiovascular magnetic resonance imaging (4D flow MRI) enables blood flow quantification in multiple vessels, which is crucial for patients with congenital heart disease (CHD). We investigated net flow volumes in the ascending aorta and pulmonary arteries by four different postprocessing software packages for 4D flow MRI in comparison with 2D cine phase-contrast measurements (2D PC). MATERIAL AND METHODS 4D flow and 2D PC datasets of 47 patients with biventricular CHD (median age 16, range 0.6-52 years) were acquired at 1.5 T. Net flow volumes in the ascending aorta, the main, right, and left pulmonary arteries were measured using four different postprocessing software applications and compared to offset-corrected 2D PC data. Reliability of 4D flow postprocessing software was assessed by Bland-Altman analysis and intraclass correlation coefficient (ICC). Linear regression of internal flow controls was calculated. Interobserver reproducibility was evaluated in 25 patients. RESULTS Correlation and agreement of flow volumes were very good for all software compared to 2D PC (ICC ≥ 0.94; bias ≤ 5%). Internal controls were excellent for 2D PC (r ≥ 0.95, p < 0.001) and 4D flow (r ≥ 0.94, p < 0.001) without significant difference of correlation coefficients between methods. Interobserver reliability was good for all vendors (ICC ≥ 0.94, agreement bias < 8%). CONCLUSION Haemodynamic information from 4D flow in the large thoracic arteries assessed by four commercially available postprocessing applications matches routinely performed 2D PC values. Therefore, we consider 4D flow MRI-derived data ready for clinical use in patients with CHD.
Collapse
Affiliation(s)
- Barbara Elisabeth Ursula Burkhardt
- Paediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zürich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland.
| | - Christian Johannes Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland
| | - Fraser Maurice Callaghan
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland
| | - Emanuela Regina Valsangiacomo Buechel
- Paediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zürich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland
| | - Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, Zurich, Switzerland
| |
Collapse
|
5
|
Impact of pulmonary artery flow distribution on Fontan hemodynamics and flow energetics. Pediatr Radiol 2023; 53:900-909. [PMID: 36879047 PMCID: PMC10156799 DOI: 10.1007/s00247-023-05591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND With improved life expectancy following Fontan palliation, there is an increasing population of patients with a total cavopulmonary connection. However, there is a poor understanding of which patients will experience Fontan failure and when. 4D flow MRI has identified several metrics of clinical interest, but longitudinal studies investigating hemodynamics in Fontan patients are lacking. OBJECTIVE We aimed to investigate the relationship between flow distribution to the pulmonary arteries and regional hemodynamic metrics in a unique cohort with follow-up 4D flow MRI. MATERIALS AND METHODS Patients with > 6 months of 4D flow MRI follow-up were included. Flow distribution from the caval veins to pulmonary arteries was measured in addition to regional measures of peak velocity, viscous energy loss (ELmean and ELtot), and kinetic energy. RESULTS Ten patients with total cavopulmonary connection (17.7 ± 8.8 years at baseline, follow-up: 4.4 ± 2.6 years) were included. Five subjects had unequal flow distribution from the IVC to the pulmonary arteries at baseline. Over time, these subjects tended to have larger increases in peak velocity (39.2% vs 6.6%), ELmean (11.6% vs -38.3%), ELtot (9.5% vs -36.2%), and kinetic energy (96.1% vs 36.3%) in the IVC. However, these differences were statistically insignificant. We found that changes in ELmean and ELtot were significantly associated with changes in peak velocity in the caval veins (R2 > 0.5, P < 0.001). CONCLUSION Unequal flow distribution from the IVC may drive increasing peak velocities and viscous energy losses, which have been associated with worse clinical outcomes. Changes in peak velocity may serve as a surrogate measure for changes in viscous energy loss.
Collapse
|
6
|
Roos PR, Rijnberg FM, Westenberg JJM, Lamb HJ. Particle Tracing Based on
4D
Flow Magnetic Resonance Imaging: A Systematic Review into Methods, Applications, and Current Developments. J Magn Reson Imaging 2022; 57:1320-1339. [PMID: 36484213 DOI: 10.1002/jmri.28540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Particle tracing based on 4D Flow MRI has been applied as a quantitative and qualitative postprocessing technique to study temporally evolving blood flow patterns. PURPOSE To systematically review the various methods to perform 4D Flow MRI-based particle tracing, as well as the clinical value, clinical applications, and current developments of the technique. STUDY TYPE The study type is systematic review. SUBJECTS Patients with cardiovascular disease (such as Marfan, Fontan, Tetralogy of Fallot), healthy controls, and cardiovascular phantoms that received 4D Flow MRI with particle tracing. FIELD STRENGTH/SEQUENCE Three-dimensional three-directional cine phase-contrast MRI, at 1.5 T and 3 T. ASSESSMENT Two systematic searches were performed on the PubMed database using Boolean operators and the relevant key terms covering 4D Flow MRI and particle tracing. One systematic search was focused on particle tracing methods, whereas the other on applications. Additional articles from other sources were sought out and included after a similar inspection. Particle tracing methods, clinical applications, clinical value, and current developments were extracted. STATISTICAL TESTS The main results of the included studies are summarized, without additional statistical analysis. RESULTS Of 127 unique articles retrieved from the initial search, 56 were included (28 for methods and 54 for applications). Most articles that described particle tracing methods used an adaptive timestep, a fourth order Runge-Kutta integration method, and linear interpolation in the time dimension. Particle tracing was applied in heart chambers, aorta, venae cavae, Fontan circulation, pulmonary arteries, abdominal vasculature, peripheral arteries, carotid arteries, and cerebral vasculature. Applications were grouped as intravascular, intracardiac, flow stasis, and research. DATA CONCLUSIONS Particle tracing based on 4D Flow MRI gives unique insight into blood flow in several cardiovascular diseases, but the quality depends heavily on the MRI data quality. Further studies are required to evaluate the clinical value of the technique for different cardiovascular diseases. EVIDENCE LEVEL 5. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
- Paul R. Roos
- Department of Radiology Leiden University Medical Center Leiden The Netherlands
| | - Friso M. Rijnberg
- Department of Cardiothoracic Surgery Leiden University Medical Center Leiden The Netherlands
| | | | - Hildo J. Lamb
- Department of Radiology Leiden University Medical Center Leiden The Netherlands
| |
Collapse
|
7
|
Goo HW. Contrast-Enhanced CT Protocol for the Fontan Pathway: Comparison Between 1- and 3-Minute Scan Delays. Pediatr Cardiol 2022; 43:1104-1113. [PMID: 35107628 DOI: 10.1007/s00246-022-02830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
Optimal enhancement of the Fontan pathway is crucial for the accurate CT evaluation. Current guidelines for contrast-enhanced CT protocols are rather inconsistent in scan delays and injection methods. This single-center, retrospective study was performed to compare objective measures of contrast enhancement between 1- and 3-min scan delays (41 and 36 patients, respectively) to determine a better contrast-enhanced CT protocols for evaluating the Fontan pathway. In both groups, a biphasic injection protocol, in which 50% diluted contrast agent (the amount of iodinated contrast agent: 2.0 mL/kg; the amount of saline: 2.0 mL/kg) was injected at the injection rate of 0.5‒2.5 mL/s for 50 s followed by a saline flush at the same injection rate (0.5‒2.5 mL/s), was used. The degree and heterogeneity of cardiovascular enhancement, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were quantitatively evaluated. The mean densities of all cardiovascular structures were significantly higher in the 1-min delay protocol than in the 3-min delay protocols (p < 0.001). Heterogeneous enhancement (normalized standard deviation > 0.70) in the Fontan pathway was significantly more frequent in the 1-min delay protocol (p < 0.001). No significant differences were found in image noise (p > 0.141) and the frequency showing suboptimal noise (p = 1.000) between the two protocols. SNR and CNR were significantly lower in the 3-min delay protocol (p < 0.001). Compared with the 1-min delay protocol, the 3-min delay protocol achieved more homogeneous enhancement in the Fontan pathway on CT but showed lower contrast enhancement, SNR, and, CNR, indicating the need for further improvement.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
8
|
Corrado PA, Wentland AL, Starekova J, Dhyani A, Goss KN, Wieben O. Fully automated intracardiac 4D flow MRI post-processing using deep learning for biventricular segmentation. Eur Radiol 2022; 32:5669-5678. [PMID: 35175379 DOI: 10.1007/s00330-022-08616-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES 4D flow MRI allows for a comprehensive assessment of intracardiac blood flow, useful for assessing cardiovascular diseases, but post-processing requires time-consuming ventricular segmentation throughout the cardiac cycle and is prone to subjective errors. Here, we evaluate the use of automatic left and right ventricular (LV and RV) segmentation based on deep learning (DL) network that operates on short-axis cine bSSFP images. METHODS A previously published DL network was fine-tuned via retraining on a local database of 106 subjects scanned at our institution. In 26 test subjects, the ventricles were segmented automatically by the network and manually by 3 human observers on bSSFP MRI. The bSSFP images were then registered to the corresponding 4D flow images to apply the segmentation to 4D flow velocity data. Dice coefficients and the relative deviation between measurements (automatic vs. manual and interobserver manual) of various hemodynamic parameters were assessed. RESULTS The automated segmentation resulted in similar Dice scores (LV: 0.92, RV: 0.86) and lower relative deviations from manual segmentation in left ventricular (LV) average kinetic energy (KE) (8%) and RV KE (15%) than the Dice scores (LV: 0.91, RV: 0.87) and relative deviations between manual segmentation observers (LV KE: 11%, p = 0.01; RV KE: 19%, p = 0.03). CONCLUSIONS The automated post-processing method using deep learning resulted in hemodynamic measurements that differ from a manual observer's measurements equally or less than the variation between manual observers. This approach can be used to decrease post-processing time on intraventricular 4D flow data and mitigate interobserver variability. KEY POINTS • Our proposed method allows for fully automated post-processing of intraventricular 4D flow MRI data. • Our method resulted in hemodynamic measurements that matched those derived from manual segmentation equally as well as interobserver variability. • Our method can be used to greatly accelerate intraventricular 4D flow post-processing and improve interobserver repeatability.
Collapse
Affiliation(s)
- Philip A Corrado
- University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.
| | - Andrew L Wentland
- University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Jitka Starekova
- University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Archana Dhyani
- University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Kara N Goss
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Oliver Wieben
- University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|
9
|
van der Woude SFS, Rijnberg FM, Hazekamp MG, Jongbloed MRM, Kenjeres S, Lamb HJ, Westenberg JJM, Roest AAW, Wentzel JJ. The Influence of Respiration on Blood Flow in the Fontan Circulation: Insights for Imaging-Based Clinical Evaluation of the Total Cavopulmonary Connection. Front Cardiovasc Med 2021; 8:683849. [PMID: 34422920 PMCID: PMC8374887 DOI: 10.3389/fcvm.2021.683849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Congenital heart disease is the most common birth defect and functionally univentricular heart defects represent the most severe end of this spectrum. The Fontan circulation provides an unique solution for single ventricle patients, by connecting both caval veins directly to the pulmonary arteries. As a result, the pulmonary circulation in Fontan palliated patients is characterized by a passive, low-energy circulation that depends on increased systemic venous pressure to drive blood toward the lungs. The absence of a subpulmonary ventricle led to the widely believed concept that respiration, by sucking blood to the pulmonary circulation during inspiration, is of great importance as a driving force for antegrade blood flow in Fontan patients. However, recent studies show that respiration influences pulsatility, but has a limited effect on net forward flow in the Fontan circulation. Importantly, since MRI examination is recommended every 2 years in Fontan patients, clinicians should be aware that most conventional MRI flow sequences do not capture the pulsatility of the blood flow as a result of the respiration. In this review, the unique flow dynamics influenced by the cardiac and respiratory cycle at multiple locations within the Fontan circulation is discussed. The impact of (not) incorporating respiration in different MRI flow sequences on the interpretation of clinical flow parameters will be covered. Finally, the influence of incorporating respiration in advanced computational fluid dynamic modeling will be outlined.
Collapse
Affiliation(s)
- Séline F S van der Woude
- Department of Cardiology, Biomedical Engineering, Biomechanics Laboratory, Rotterdam, Netherlands
| | - Friso M Rijnberg
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Mark G Hazekamp
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy, Embryology and Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Sasa Kenjeres
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J. M. Burgerscentrum Research School for Fluid Mechanics, Delft, Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Arno A W Roest
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Biomechanics Laboratory, Rotterdam, Netherlands
| |
Collapse
|
10
|
Rijnberg FM, van der Woude SFS, van Assen HC, Juffermans JF, Hazekamp MG, Jongbloed MRM, Kenjeres S, Lamb HJ, Westenberg JJM, Wentzel JJ, Roest AAW. Non-uniform mixing of hepatic venous flow and inferior vena cava flow in the Fontan conduit. J R Soc Interface 2021; 18:20201027. [PMID: 33823607 PMCID: PMC8086942 DOI: 10.1098/rsif.2020.1027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fontan patients require a balanced hepatic blood flow distribution (HFD) to prevent pulmonary arteriovenous malformations. Currently, HFD is quantified by tracking Fontan conduit flow, assuming hepatic venous (HV) flow to be uniformly distributed within the Fontan conduit. However, this assumption may be unvalid leading to inaccuracies in HFD quantification with potential clinical impact. The aim of this study was to (i) assess the mixing of HV flow and inferior vena caval (IVC) flow within the Fontan conduit and (ii) quantify HFD by directly tracking HV flow and quantitatively comparing results with the conventional approach. Patient-specific, time-resolved computational fluid dynamic models of 15 total cavopulmonary connections were generated, including the HV and subhepatic IVC. Mixing of HV and IVC flow, on a scale between 0 (no mixing) and 1 (perfect mixing), was assessed at the caudal and cranial Fontan conduit. HFD was quantified by tracking particles from the caudal (HFDcaudal conduit) and cranial (HFDcranial conduit) conduit and from the hepatic veins (HFDHV). HV flow was non-uniformly distributed at both the caudal (mean mixing 0.66 ± 0.13) and cranial (mean 0.79 ± 0.11) level within the Fontan conduit. On a cohort level, differences in HFD between methods were significant but small; HFDHV (51.0 ± 20.6%) versus HFDcaudal conduit (48.2 ± 21.9%, p = 0.033) or HFDcranial conduit (48.0 ± 21.9%, p = 0.044). However, individual absolute differences of 8.2–14.9% in HFD were observed in 4/15 patients. HV flow is non-uniformly distributed within the Fontan conduit. Substantial individual inaccuracies in HFD quantification were observed in a subset of patients with potential clinical impact.
Collapse
Affiliation(s)
- Friso M Rijnberg
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark G Hazekamp
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology and Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sasa Kenjeres
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J. M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Arno A W Roest
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Reduced scan time and superior image quality with 3D flow MRI compared to 4D flow MRI for hemodynamic evaluation of the Fontan pathway. Sci Rep 2021; 11:6507. [PMID: 33753790 PMCID: PMC7985309 DOI: 10.1038/s41598-021-85936-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Long scan times prohibit a widespread clinical applicability of 4D flow MRI in Fontan patients. As pulsatility in the Fontan pathway is minimal during the cardiac cycle, acquiring non-ECG gated 3D flow MRI may result in a reduction of scan time while accurately obtaining time-averaged clinical parameters in comparison with 2D and 4D flow MRI. Thirty-two Fontan patients prospectively underwent 2D (reference), 3D and 4D flow MRI of the Fontan pathway. Multiple clinical parameters were assessed from time-averaged flow rates, including the right-to-left pulmonary flow distribution (main endpoint) and systemic-to-pulmonary collateral flow (SPCF). A ten-fold reduction in scan time was achieved [4D flow 15.9 min (SD 2.7 min) and 3D flow 1.6 min (SD 7.8 s), p < 0.001] with a superior signal-to-noise ratio [mean ratio of SNRs 1.7 (0.8), p < 0.001] and vessel sharpness [mean ratio 1.2 (0.4), p = 0.01] with 3D flow. Compared to 2D flow, good–excellent agreement was shown for mean flow rates (ICC 0.82–0.96) and right-to-left pulmonary flow distribution (ICC 0.97). SPCF derived from 3D flow showed good agreement with that from 4D flow (ICC 0.86). 3D flow MRI allows for obtaining time-averaged flow rates and derived clinical parameters in the Fontan pathway with good–excellent agreement with 2D and 4D flow, but with a tenfold reduction in scan time and significantly improved image quality compared to 4D flow.
Collapse
|
12
|
Kroeger JR, Pavesio FC, Mörsdorf R, Weiss K, Bunck AC, Baeßler B, Maintz D, Giese D. Velocity quantification in 44 healthy volunteers using accelerated multi-VENC 4D flow CMR. Eur J Radiol 2021; 137:109570. [PMID: 33596498 DOI: 10.1016/j.ejrad.2021.109570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND To evaluate the feasibility of a k-t accelerated multi-VENC 4D phase contrast flow MRI acquisition of the main heart-surrounding vessels, its benefits over a traditional single-VENC acquisition and to present reference flow and velocity values in a large cohort of volunteers. METHODS 44 healthy volunteers were examined on a 3 T MRI scanner (Ingenia, Philips, Best, The Netherlands). 4D flow measurements were obtained with a FOV including the aorta and the pulmonary arteries. VENC values were set to 40, 100 and 200 cm/s and unfolded based on an MRI signal model. Unfolded multi-VENC data was compared to the single-VENC with VENC 200 cm/s. Flow and velocity quantification was performed in several regions of interest (ROI) placed in the ascending aorta and in the main pulmonary artery. Conservation of mass analysis was performed for single- and multi-VENC datasets. Values for mean and maximal flow velocity and stroke volume were calculated and compared to the literature. RESULTS Mean scan time was 13.8 ± 4 min. Differences between stroke volumes between the ascending aorta and the main pulmonary artery were significantly lower in multi-VENC datasets compared to single-VENC datasets (9.6 ± 7.8 mL vs. 25.4 ± 26.4 mL, p < 0.001). This was also true for differences in stroke volume between up- and downstream ROIs in the ascending aorta and pulmonary artery. Values for mean and maximal velocities and stroke volume were in-line with previous studies. To highlight potential clinical applications two exemplary 4D flow measurements in patients with different pathologies are shown and compared to single-VENC datasets. CONCLUSIONS k-t accelerated multi-VENC 4D phase contrast flow MRI acquisition of the great vessels is feasible in a clinically acceptable scan duration. It offers improvements over traditional single-VENC 4D flow, expectedly being valuable when vessels with different flow velocities or complex flow phenomena are evaluated.
Collapse
Affiliation(s)
- Jan Robert Kroeger
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany.
| | - Francesca Claudia Pavesio
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Richard Mörsdorf
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Kilian Weiss
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Philips GmbH, Hamburg, Germany.
| | - Alexander Christian Bunck
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Bettina Baeßler
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
| | - David Maintz
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Daniel Giese
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Geiger J, Callaghan FM, Burkhardt BEU, Valsangiacomo Buechel ER, Kellenberger CJ. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr Radiol 2021; 51:1503-1517. [PMID: 33313980 PMCID: PMC8266722 DOI: 10.1007/s00247-020-04885-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular MRI has become an essential imaging modality in children with congenital heart disease (CHD) in the last 15-20 years. With use of appropriate sequences, it provides important information on cardiovascular anatomy, blood flow and function for initial diagnosis and post-surgical or -interventional monitoring in children. Although considered as more sophisticated and challenging than CT, in particular in neonates and infants, MRI is able to provide information on intra- and extracardiac haemodynamics, in contrast to CT. In recent years, four-dimensional (4-D) flow MRI has emerged as an additional MR technique for retrospective assessment and visualisation of blood flow within the heart and any vessel of interest within the acquired three-dimensional (3-D) volume. Its application in young children requires special adaptations for the smaller vessel size and faster heart rate compared to adolescents or adults. In this article, we provide an overview of 4-D flow MRI in various types of complex CHD in neonates and infants to demonstrate its potential indications and beneficial application for optimised individual cardiovascular assessment. We focus on its application in clinical routine cardiovascular workup and, in addition, show some examples with pathologies other than CHD to highlight that 4-D flow MRI yields new insights in disease understanding and therapy planning. We shortly review the essentials of 4-D flow data acquisition, pre- and post-processing techniques in neonates, infants and young children. Finally, we conclude with some details on accuracy, limitations and pitfalls of the technique.
Collapse
Affiliation(s)
- Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr 75, 8032, Zürich, Switzerland. .,Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Fraser M. Callaghan
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Center for MR research, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Barbara E. U. Burkhardt
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Emanuela R. Valsangiacomo Buechel
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Christian J. Kellenberger
- Department of Diagnostic Imaging, University Children’s Hospital Zürich, Steinwiesstr 75, 8032 Zürich, Switzerland ,Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Rizk J. 4D flow MRI applications in congenital heart disease. Eur Radiol 2020; 31:1160-1174. [PMID: 32870392 DOI: 10.1007/s00330-020-07210-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Advances in the diagnosis and management of congenital heart disease (CHD) have resulted in a growing population of patients surviving well into adulthood and requiring lifelong follow-up. Flow quantification is a central component in the assessment of patients with CHD. 4D flow magnetic resonance imaging (MRI) has emerged as a tool that enables comprehensive study of flow. It involves the acquisition of a three-dimensional time-resolved volume with velocity encoding in all three spatial directions along the cardiac cycle. This allows flow quantification and visualization of blood flow patterns as well as the study of advanced hemodynamic parameters as kinetic energy and wall shear stress. 4D flow MRI-based study of flow has given insight into the altered hemodynamics in CHD particularly in bicuspid aortic valve disease and Fontan circulation. The aim of this review is to discuss the expanding clinical and research applications of 4D flow MRI in CHD as well its limitations.Key Points• Three-dimensional velocity encoding allows not only flow quantification but also the visualization of multidirectional flow patterns and the study of advanced hemodynamic parameters.• 4D flow MRI has added insight into the abnormal hemodynamics involved in congenital heart disease in particular in bicuspid aortic valve and Fontan circulation.• The main limitation of 4D flow MRI in congenital heart disease is the relatively long scan duration required for the complete coverage of the heart and great vessels with adequate spatiotemporal resolution.
Collapse
Affiliation(s)
- Judy Rizk
- Department of Cardiology, Faculty of Medicine, Alexandria University, El-Khartoum Square, Alexandria, 21521, Egypt.
| |
Collapse
|
15
|
Corrado PA, Shivapuja BR, François CJ. State of the Art Flow Imaging in Adult CHD: How I Do It. Semin Roentgenol 2020; 55:279-289. [PMID: 32859344 DOI: 10.1053/j.ro.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Abstract
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
17
|
Schäfer M, Frank BS, Humphries SM, Hunter KS, Carmody KL, Jacobsen R, Mitchell MB, Jaggers J, Stone ML, Morgan GJ, Barker AJ, Browne LP, Ivy DD, Younoszai A, Di Maria MV. Flow profile characteristics in Fontan circulation are associated with the single ventricle dilation and function: principal component analysis study. Am J Physiol Heart Circ Physiol 2020; 318:H1032-H1040. [PMID: 32167782 DOI: 10.1152/ajpheart.00686.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Fontan circulation is characterized as a nonpulsatile flow propagation without a pressure-generating ventricle. However, flow through the Fontan circulation still exhibits oscillatory waves as a result of pressure changes generated by the systemic single ventricle. Identification of discrete flow patterns through the Fontan circuit may be important to understand single ventricle performance. Ninety-seven patients with Fontan circulation underwent phase-contrast MRI of the right pulmonary artery, yielding subject-specific flow waveforms. Principal component (PC) analysis was performed on preprocessed flow waveforms. Principal components were then correlated with standard MRI indices of function, volume, and aortopulmonary collateral flow. The first principal component (PC) described systolic versus diastolic-dominant flow through the Fontan circulation, accounting for 31.3% of the variance in all waveforms. The first PC correlated with end-diastolic volume (R = 0.34, P = 0.001), and end-systolic volume (R = 0.30, P = 0.003), cardiac index (R = 0.51, P < 0.001), and the amount of aortopulmonary collateral flow (R = 0.25, P = 0.027)-lower ventricular volumes and a smaller volume of collateral flow-were associated with diastolic-dominant cavopulmonary flow. The second PC accounted for 19.5% of variance and described late diastolic acceleration versus deceleration and correlated with ejection fraction-diastolic deceleration was associated with higher ejection fraction. Principal components describing the diastolic flow variations in pulmonary arteries are related to the single ventricle function and volumes. Particularly, diastolic-dominant flow without late acceleration appears to be related to preserved ventricular volume and function, respectively.NEW & NOTEWORTHY The exact physiological significance of flow oscillations of phasic and temporal flow variations in Fontan circulation is unknown. With the use of principal component analysis, we discovered that flow variations in the right pulmonary artery of Fontan patients are related to the single ventricle function and volumes. Particularly, diastolic-dominant flow without late acceleration appears to be related to more ideal ventricular volume and systolic function, respectively.
Collapse
Affiliation(s)
- Michal Schäfer
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Benjamin S Frank
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | | | - Kendall S Hunter
- Department of Bioengineering, College of Engineering and Applied Sciences, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Katherine L Carmody
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Roni Jacobsen
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Max B Mitchell
- Section of Congenital Heart Surgery, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - James Jaggers
- Section of Congenital Heart Surgery, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Matthew L Stone
- Section of Congenital Heart Surgery, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Gareth J Morgan
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Alex J Barker
- Department of Bioengineering, College of Engineering and Applied Sciences, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado.,Department of Radiology, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Lorna P Browne
- Department of Radiology, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - D Dunbar Ivy
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Adel Younoszai
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Michael V Di Maria
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| |
Collapse
|
18
|
Fu Y, Qiao A, Yang Y, Fan X. Numerical Simulation of the Effect of Pulmonary Vascular Resistance on the Hemodynamics of Reoperation After Failure of One and a Half Ventricle Repair. Front Physiol 2020; 11:207. [PMID: 32256381 PMCID: PMC7090855 DOI: 10.3389/fphys.2020.00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The one and a half ventricle repair (1.5VR) is a common clinical choice for patients with right heart dysfunction. Considering the influence of blood circulation failure and reoperation in urgent need, this essay aims to explore the hemodynamic effects of different pulmonary vascular resistance (PVR) values on reoperation after 1.5VR failure. METHODS The lumped parameter model (LPM) was used to simulate the reoperation, including the return biventricular repair (2VR), ligation of azygos vein (1.5VR') and return single ventricular repair (1.0VR). Firstly, the debugging parameters were used to simulate the hemodynamics of 2VR. Secondly, the value of PVR was changed from one to four times while the other parameters remained unchanged. Finally, 15 cardiac cycles were simulated and the 15th result was obtained. In this work, the left and right ventricular stroke work and their sum (Plv, Prv, Ptotal), the left and right ventricular ejection fraction (LVEF, RVEF), the mean Cardiac Output (mCO) and the mean pressure and flow-rate ratio of superior and inferior vena cava (mPsvc\mPivc and mQsvc\mQivc), respectively, were used to describe the hemodynamics of reoperation. RESULTS With the change of PVR from one to four times, the values of Plv, Prv, Ptotal, LVEF, and RVEF gradually decreased. The change rate of Plv, Ptotal and LVEF of 1.0VR were the largest in the three kinds of reoperation. The change rate of Prv of 1.5VR' was larger than that of 2VR, but it was the opposite for their EF change rate. The mCO of 2VR, 1.5VR', and 1.0VR decreased by 18.53%, 37.58%, and 48.07%, respectively. The mPsvc\mPivc of 1.5VR' increased from 3.76 to 6.77 and the mQsvc\mQivc decreased from 0.55 to 0.36, while the mPsvc\mPivc and mQsvc\mQivc of 2VR and 1.0VR remained 1 and 0.67, respectively. The peak value of the tricuspid flow-rate (Qti) waveform of 2VR and 1.5VR' changed from "E peak" to "A peak." CONCLUSION The numerical results demonstrate the highly reoperation-dependent hemodynamic consequences and their responses to variations in PVR. Comprehensive analysis of EF, mCO and ventricular stroke work indicates that PVR has a greater impact on 1.5VR' and 1.0VR. Therefore, we suggest that the selection strategy of reoperation should focus on PVR.
Collapse
Affiliation(s)
- Yan Fu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Aike Qiao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yao Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiangming Fan
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Bastkowski R, Bindermann R, Brockmeier K, Weiss K, Maintz D, Giese D. Respiration Dependency of Caval Blood Flow in Patients with Fontan Circulation: Quantification Using 5D Flow MRI. Radiol Cardiothorac Imaging 2019; 1:e190005. [PMID: 33778515 PMCID: PMC7977808 DOI: 10.1148/ryct.2019190005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 06/12/2023]
Abstract
PURPOSE To measure respiration-dependent blood flow in the total cavopulmonary connection (TCPC) of patients with Fontan circulation by using free-running, fully self-gated five-dimensional (5D) flow MRI. MATERIALS AND METHODS From July to November 2018, 10 volunteers (six female volunteers, mean age, 25.1 years ± 4.4 [standard deviation]) and six patients with Fontan circulation (two female patients, mean age, 19.7 years ± 7.5) with a TCPC were examined by using a cardiac- and respiration-resolved three-directional and three-dimensional phase-contrast MRI sequence (hereafter, 5D flow MRI). This prospective study was conducted with approval of the local ethics committee, and written informed consent was obtained from all participants and/or their representative. 5D flow data were acquired during free breathing. Data were reconstructed into 15-20 heart phases and four respiratory phases: end-expiration, inspiration, end-inspiration, and expiration. Respiration-dependent stroke volumes (SVs) and particle traces were analyzed from the caval circulation of volunteers and patients with Fontan circulation. Statistical analysis was performed by using parametric tests and scatterplots. RESULTS The respiration dependency of caval blood flow was evaluated in all participants and was significantly elevated in patients with Fontan circulation as compared with volunteers. In patients, SV in the inferior vena cava (IVC) showed variations of 120% between inspiration and expiration (P = .002). The flow distribution in the IVC and superior vena cava among the four respiratory phases was differentiated by 20% (range, 9%-30%) and 4% (range, 0%-13%), respectively. CONCLUSION Hemodynamic parameters (volume flow and blood flow distribution) throughout the cardiac and respiratory cycle can be measured using a single scan, potentially providing further insights into the Fontan circulation.© RSNA, 2019Supplemental material is available for this article.
Collapse
|
20
|
Rutkowski D, Medero R, Ruesink T, Roldan-Alzate A. Modeling Physiological Flow Variation in Fontan Models with 4d Flow Mri, Particle Image Velocimetry, and Arterial Spin Labeling. J Biomech Eng 2019; 141:1065454. [PMID: 31596919 DOI: 10.1115/1.4045110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/08/2022]
Abstract
The Fontan procedure is a successful palliation for single ventricle defect. Yet, a number of complications still occur in Fontan patients due to abnormal blood flow dynamics, necessitating improved flow analysis and treatment methods. Phase-contrast magnetic resonance imaging (MRI) has emerged as a suitable method for such flow analysis. However, limitations on altering physiological blood flow conditions in the patient while in the MRI bore inhibit experimental investigation of a variety of factors that contribute to impaired cardiovascular health in these patients. Furthermore, resolution and flow regime limitations in phase contrast MRI pose a challenge for accurate and consistent flow characterization. In this study, patient-specific physical models were created based on nine Fontan geometries and MRI experiments mimicking low and high flow conditions, as well as steady and pulsatile flow, were conducted. Additionally, an optically transparent Fontan model was created for flow analyses using a particle image velocimetry (PIV) system, arterial spin labeling (ASL), and four-dimensional (4D) flow MRI. Differences, though non-statistically significant, were observed between flow conditions and between patient-specific models. Large between-model variation supported the need for further improvement for patient-specific modeling on each unique Fontan anatomical configuration. Furthermore, high resolution PIV and flow tracking ASL data provided flow information that was not obtainable with 4D flow MRI alone.
Collapse
Affiliation(s)
- David Rutkowski
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - Rafael Medero
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - Timothy Ruesink
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - Alejandro Roldan-Alzate
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States; Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, United States
| |
Collapse
|
21
|
Accuracy evaluation of blood flow distribution in the Fontan circulation: effects of resolution and velocity noise. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Jarvis K, Schnell S, Barker AJ, Rose M, Robinson JD, Rigsby CK, Markl M. Caval to pulmonary 3D flow distribution in patients with Fontan circulation and impact of potential 4D flow MRI error sources. Magn Reson Med 2018; 81:1205-1218. [PMID: 30277276 DOI: 10.1002/mrm.27455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 11/08/2022]
Abstract
PURPOSE Uneven flow distribution in patients with Fontan circulation is suspected to lead to complications. 4D flow MRI offers evaluation using time-resolved pathlines; however, the potential error is not well understood. The aim of this study was to systematically assess variability in flow distribution caused by well-known sources of error. METHODS 4D flow MRI was acquired in 14 patients with Fontan circulation. Flow distribution was quantified by the % of caval venous flow pathlines reaching the left and right pulmonary arteries. Impact of data acquisition and data processing uncertainties were investigated by (1) probabilistic 4D blood flow tracking at varying noise levels, (2) down-sampling to mimic acquisition at different spatial resolutions, (3) pathline calculation with and without eddy current correction, and (4) varied segmentation of the Fontan geometry to mimic analysis errors. RESULTS Averaged among the cohort, uncertainties accounted for flow distribution errors from noise ≤3.2%, low spatial resolution ≤2.3% to 3.8%, eddy currents ≤6.4%, and inaccurate segmentation ≤3.9% to 9.1% (dilation and erosion, respectively). In a worst-case scenario (maximum additive errors for all 4 sources), flow distribution errors were as high as 22.5%. CONCLUSION Inaccuracies related to postprocessing (segmentation, eddy currents) resulted in the largest potential error (≤15.5% combined) whereas errors related to data acquisition (noise, low spatial resolution) had a lower impact (≤5.5%-7.0% combined). Whereas it is unlikely that these errors will be additive or affect the identification of severe asymmetry, these results illustrate the importance of eddy current correction and accurate segmentation to minimize Fontan flow distribution errors.
Collapse
Affiliation(s)
- Kelly Jarvis
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Illinois
| | - Susanne Schnell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael Rose
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Joshua D Robinson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Division of Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Cynthia K Rigsby
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Division of Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Illinois
| |
Collapse
|
23
|
Rijnberg FM, Hazekamp MG, Wentzel JJ, de Koning PJ, Westenberg JJ, Jongbloed MR, Blom NA, Roest AA. Energetics of Blood Flow in Cardiovascular Disease. Circulation 2018; 137:2393-2407. [DOI: 10.1161/circulationaha.117.033359] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Jolanda J. Wentzel
- Leiden University Medical Center, The Netherlands. Department of Biomechanical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands (J.J.W.)
| | | | | | | | - Nico A. Blom
- Department of Pediatric Cardiology (N.A.B., A.A.W.R.)
| | | |
Collapse
|
24
|
Talwar S, Sankhyan L, Patel C, Sreenivas V, Choudhary SK, Airan B. Evaluation of differential pulmonary perfusion using 99mTc macroaggregated albumin after the Fontan procedure. Interact Cardiovasc Thorac Surg 2018; 26:651-659. [PMID: 29240900 DOI: 10.1093/icvts/ivx377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/30/2017] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The Fontan procedure [total cavopulmonary connection (TCPC)] is the final palliation for patients with univentricular physiology. We studied differential perfusion ratio and percentage uptake of a radiotracer in different zones of each lung following TCPC. METHODS Between July 2015 and June 2017, 45 patients underwent 99mTc macroaggregated albumin lung perfusion scan at a mean follow-up period of 49.3 ± SD 26.1 days following TCPC. Differential perfusion ratio and percentage uptake of the radiotracer in the upper, middle and lower zones of each lung were calculated. RESULTS Post-foot injection [inferior vena cava (IVC) injection], preferential flow to the lungs was as follows: left lung (n = 13, 30.2%), right lung (n = 13, 30.2%) and uniformly to both lungs (n= 17, 39.6%). Post-arm injection [superior vena cava (SVC) injection], preferential flow to the lungs was as follows: left lung (n = 13, 30.2%), right lung (n = 22, 51.2%) and uniformly to both lungs (n= 8, 18.6%). The middle zone was perfused the most in both lungs. Total lower zone mean perfusion was higher than the upper zone following both SVC injection and IVC injection (34.1 ± SD 5.3% vs 17. ± SD 4.1% and 33 ± SD 5.0% vs 17.5 ± SD 4.1%, respectively). In patients with bilateral SVC, post-IVC injection, 6 (75%) patients had preferential flow to the right lung, whereas post-SVC injection, preferential flow to the left lung was visualized in 7 (87.5%) patients. CONCLUSIONS Following TCPC, IVC blood was distributed uniformly in both lungs. SVC blood preferentially perfused the right lung. The middle zone was perfused the most in both lungs.
Collapse
Affiliation(s)
- Sachin Talwar
- Department of Cardiothoracic and Vascular Surgery, Cardiothoracic Center, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmi Sankhyan
- Department of Cardiothoracic and Vascular Surgery, Cardiothoracic Center, All India Institute of Medical Sciences, New Delhi, India
| | - Chetan Patel
- Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Shiv Kumar Choudhary
- Department of Cardiothoracic and Vascular Surgery, Cardiothoracic Center, All India Institute of Medical Sciences, New Delhi, India
| | - Balram Airan
- Department of Cardiothoracic and Vascular Surgery, Cardiothoracic Center, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Burchill LJ, Huang J, Tretter JT, Khan AM, Crean AM, Veldtman GR, Kaul S, Broberg CS. Noninvasive Imaging in Adult Congenital Heart Disease. Circ Res 2017; 120:995-1014. [DOI: 10.1161/circresaha.116.308983] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
Multimodality cardiovascular imaging plays a central role in caring for patients with congenital heart disease (CHD). CHD clinicians and scientists are interested not only in cardiac morphology but also in the maladaptive ventricular responses and extracellular changes predisposing to adverse outcomes in this population. Expertise in the applications, strengths, and pitfalls of these cardiovascular imaging techniques as they relate to CHD is essential. The purpose of this article is to provide an overview of cardiovascular imaging in CHD. We focus on the role of 3 widely used noninvasive imaging techniques in CHD—echocardiography, cardiac magnetic resonance imaging, and cardiac computed tomography. Consideration is given to the common goals of cardiac imaging in CHD, including assessment of structural and residual heart disease before and after surgery, quantification of ventricular volume and function, stress imaging, shunt quantification, and tissue characterization. Extracardiac imaging is highlighted as an increasingly important aspect of CHD care.
Collapse
Affiliation(s)
- Luke J. Burchill
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Jennifer Huang
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Justin T. Tretter
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Abigail M. Khan
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Andrew M. Crean
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Gruschen R. Veldtman
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Sanjiv Kaul
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| | - Craig S. Broberg
- From the Knight Cardiovascular Institute (L.J.B., A.M.K., S.K., C.S.B.), Doernbecher Children’s Hospital (J.H.), Oregon Health and Science University, Portland; The Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (J.T.T., G.R.V.); Department of Cardiology, Heart Lung and Vascular Institute, University of Cincinnati Medical Center, OH (A.M.C.); Department of Cardiology, Cincinnati Children’s Hospital, OH (A.M.C.); Department of Cardiology (A.M.C.) and Joint Department of Medical
| |
Collapse
|
26
|
Kamphuis VP, Westenberg JJM, van der Palen RLF, Blom NA, de Roos A, van der Geest R, Elbaz MSM, Roest AAW. Unravelling cardiovascular disease using four dimensional flow cardiovascular magnetic resonance. Int J Cardiovasc Imaging 2016; 33:1069-1081. [PMID: 27888419 PMCID: PMC5489572 DOI: 10.1007/s10554-016-1031-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Abstract
Knowledge of normal and abnormal flow patterns in the human cardiovascular system increases our understanding of normal physiology and may help unravel the complex pathophysiological mechanisms leading to cardiovascular disease. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has emerged as a suitable technique that enables visualization of in vivo blood flow patterns and quantification of parameters that could potentially be of prognostic value in the disease process. In this review, current image processing tools that are used for comprehensive visualization and quantification of blood flow and energy distribution in the heart and great vessels will be discussed. Also, imaging biomarkers extracted from 4D flow CMR will be reviewed that have been shown to distinguish between normal and abnormal flow patterns. Furthermore, current applications of 4D flow CMR in the heart and great vessels will be discussed, showing its potential as an additional diagnostic modality which could aid in disease management and timing of surgical intervention.
Collapse
Affiliation(s)
- Vivian P Kamphuis
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Roel L F van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico A Blom
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert de Roos
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammed S M Elbaz
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arno A W Roest
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|