1
|
Justiz-Vaillant AA, Gopaul D, Akpaka PE, Soodeen S, Arozarena Fundora R. Severe Combined Immunodeficiency-Classification, Microbiology Association and Treatment. Microorganisms 2023; 11:1589. [PMID: 37375091 DOI: 10.3390/microorganisms11061589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Severe combined immunodeficiency (SCID) is a primary inherited immunodeficiency disease that presents before the age of three months and can be fatal. It is usually due to opportunistic infections caused by bacteria, viruses, fungi, and protozoa resulting in a decrease in number and impairment in the function of T and B cells. Autosomal, X-linked, and sporadic forms exist. Evidence of recurrent opportunistic infections and lymphopenia very early in life should prompt immunological investigation and suspicion of this rare disorder. Adequate stem cell transplantation is the treatment of choice. This review aimed to provide a comprehensive approach to the microorganisms associated with severe combined immunodeficiency (SCID) and its management. We describe SCID as a syndrome and summarize the different microorganisms that affect children and how they can be investigated and treated.
Collapse
Affiliation(s)
- Angel A Justiz-Vaillant
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Darren Gopaul
- Department of Internal Medicine, Port of Spain General Hospital, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Patrick Eberechi Akpaka
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago
| | - Sachin Soodeen
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rodolfo Arozarena Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
2
|
Cuperus E, Bygum A, Boeckmann L, Bodemer C, Bolling MC, Caproni M, Diociaiuti A, Emmert S, Fischer J, Gostynski A, Guez S, van Gijn ME, Hannulla-Jouppi K, Has C, Hernández-Martín A, Martinez AE, Mazereeuw-Hautier J, Medvecz M, Neri I, Sigurdsson V, Suessmuth K, Traupe H, Oji V, Pasmans SGMA. Proposal for a 6-step-approach for differential diagnosis of neonatal erythroderma. J Eur Acad Dermatol Venereol 2022; 36:973-986. [PMID: 35238435 PMCID: PMC9310754 DOI: 10.1111/jdv.18043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/15/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
The broad differential diagnosis of neonatal erythroderma often poses a diagnostic challenge. Mortality of neonatal erythroderma is high due to complications of the erythroderma itself and the occasionally severe and life-threatening underlying disease. Early correct recognition of the underlying cause leads to better treatment and prognosis. Currently, neonatal erythroderma is approached by a case by case basis. The purpose of this scoping review was to develop a diagnostic approach in neonatal erythroderma. After a systematic literature search in Embase (January 1990 - May 2020, 74 cases of neonatal erythroderma were identified, and 50+ diagnoses could be extracted. Main causes were the ichthyoses (40%) and primary immunodeficiencies (35%). Congenital erythroderma was present in 64% (47/74) of the cases, predominantly with congenital ichthyosis (11/11; 100%), Netherton syndrome (12/14, 86%), and Omenn syndrome (11/23, 48%). Time until diagnosis ranged from 102 days to 116 days for cases of non-congenital erythroderma and congenital erythroderma respectively. Among the 74 identified cases a total of 17 patients (23%) died within a mean of 158 days and were related to Omenn syndrome (35%), graft versus host disease (67%), and Netherton syndrome (18%). Disease history and physical examination are summarized in this paper. Age of onset and a collodion membrane can help to narrow the differential diagnoses. Investigations of blood, histology, hair analysis, genetic analysis and clinical imaging are summarized and discussed. A standard blood investigation is proposed and the need for skin biopsies with Lympho-Epithelial Kazal-Type related Inhibitor-staining is highlighted. Overall, this review shows that diagnostic procedures narrow the differential diagnosis in neonatal erythroderma. A 6-step flowchart for the diagnostic approach for neonatal erythroderma during the first month of life is proposed. The approach was made with the support of expert leaders from international multidisciplinary collaborations in the European Reference Network Skin-subthematic group Ichthyosis.
Collapse
Affiliation(s)
- E Cuperus
- Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Department of Dermatology, Center of Pediatric Dermatology, The Netherlands
| | - A Bygum
- University of Southern Denmark, Clinical Institute, Denmark & Odense University Hospital, Department of Clinical Genetics, Denmark
| | - L Boeckmann
- University Medical Center Rostock. Clinic and Policlinic for Dermatology and Venereology. Rostock, Germany
| | - C Bodemer
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Necker-Enfants Malades Hospital (AP-HP5), Paris-Centre University, Imagine Institute, INSERM, Paris, France
| | - M C Bolling
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Groningen, the Netherlands
| | - M Caproni
- Department of Health Sciences, Section of Dermatology, USL Toscana Centro, Rare Diseases Unit, University of Florence, Florence, Italy
| | - A Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Emmert
- University Medical Center Rostock. Clinic and Policlinic for Dermatology and Venereology. Rostock, Germany
| | - J Fischer
- Institute of Human Genetics, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| | - A Gostynski
- Department of Dermatology, Maastricht University Medical Center, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S Guez
- Pediatrics Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - M E van Gijn
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - K Hannulla-Jouppi
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS, Helsinki, Finland
| | - C Has
- Department of Dermatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - A E Martinez
- Pediatric Dermatology, NHS Foundation Trust, Great Ormond Street, London, UK
| | - J Mazereeuw-Hautier
- Dermatology Department, Reference Center for Rare Skin Diseases, Toulouse, France
| | - M Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - I Neri
- Dermatology - IRCCS Policlinico di Sant'Orsola - Department of Experimental, Diagnostic and Specialty Medicine (DIMES) Alma Mater, Studiorum University of Bologna, Bologna, Italy
| | - V Sigurdsson
- University Medical Center Utrecht and Utrecht University, Department of Dermatology, Utrecht, The Netherlands
| | - K Suessmuth
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - H Traupe
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - V Oji
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - S G M A Pasmans
- Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Department of Dermatology, Center of Pediatric Dermatology, The Netherlands
| |
Collapse
|
3
|
Rodriguez JA, Bang TJ, Restrepo CS, Green DB, Browne LP, Vargas D. Imaging Features of Primary Immunodeficiency Disorders. Radiol Cardiothorac Imaging 2021; 3:e200418. [PMID: 33969305 PMCID: PMC8098094 DOI: 10.1148/ryct.2021200418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Primary immunodeficiency disorders (PIDs), which are humoral, combined, and innate defects of the immune system, are relatively uncommon and may go undiagnosed in patients experiencing recurrent infections, resulting in increased morbidity and mortality. PIDs are clinically characterized by a broad spectrum of disorders, including repeated infections, autoimmune disorders, lymphoproliferative diseases, congenital anomalies, and increased risk of malignancy. Cardiothoracic imaging plays a crucial role in the diagnosis of PIDs owing to the high rates of repeated respiratory infections leading to bronchiectasis and other forms of chronic lung disease. Although PIDs as a group may seem similar in terms of radiologic features and clinical manifestations, there are specific entities that are pertinent to each PID on an individual level. For example, patients with common variable immunodeficiency may develop a unique granulomatous lymphocytic interstitial lung disease, and Good syndrome is associated with thymoma. Familiarity with the imaging characteristics of these disorders may expedite diagnosis and prognostication, and better direct therapy. Reviewing the thoracic manifestations of all PIDs is beyond the scope of this article; thus, the focus herein is on discussing the thoracic manifestations of the most common PIDs and their imaging features. © RSNA, 2021An earlier incorrect version appeared online. This article was corrected on March 25, 2021.
Collapse
|
4
|
Sherwani P, Bhalla AS, Jana M, Naranje P, Kabra SK, Gupta AK, Kandasamy D. Thoracic Manifestations of Primary Immunodeficiency Disorders. Indian J Pediatr 2020; 87:846-849. [PMID: 32385778 DOI: 10.1007/s12098-020-03289-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Primary immunodeficiency disorders (PIDD) are a group of disorders presenting with recurrent infections. The authors retrospectively reviewed the imaging records of 24 proven cases of PIDD and correlated the imaging findings with the type of defect. Final diagnoses were categorized in four groups; Group I (humoral immunodeficiency), Group 2 (cell mediated immunodeficiency), Group 3 (phagocytic disorders) and Group 4 (others). Group 3 was the commonest, followed by 1 and 2. Three most common disorders encountered were chronic granulomatous disease (CGD) (7/24), hyper IgE syndrome (5/24) and common variable immunodeficiency (CVID) (4/24). Consolidation (12/24), nodules (10/24), bronchiectasis (9/24) and lymphadenopathy (8/24) were the commonest imaging findings. Although not statistically significant, some definite imaging trends could be established. Presence of consolidation and nodules; with absence of bronchiectasis was the striking finding in Group 3. Group 2 disorders predominantly showed bronchiectasis, whereas presence of consolidation, nodules, bronchiectasis all were very common in Group 1.
Collapse
Affiliation(s)
- Poonam Sherwani
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashu Seith Bhalla
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Manisha Jana
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Priyanka Naranje
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sushil K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Arun Kumar Gupta
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | |
Collapse
|