1
|
Wu F, Chen Y, Zhang X, Li Y, Chen Z, Liu Z, Dai W, Yang C, Liu H. Relative Mediastinal Displacement Index (RMDI): A Prenatal MRI Indicator of Adverse Events in Fetuses With Isolated Left Congenital Diaphragmatic Hernia. J Magn Reson Imaging 2024; 60:2042-2052. [PMID: 38440902 DOI: 10.1002/jmri.29329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO), has partly improved congenital diaphragmatic hernia (CDH) outcomes, yet the overall morbidity and mortality remain high. Existing prenatal indicators for CDH fetuses are operator-dependent, time-consuming, or less accurate, a new simple and accurate indicator to indicate adverse events in CDH patients is needed. PURPOSE To propose and assess the association of a new MRI parameter, the relative mediastinal displacement index (RMDI), with adverse events including in-hospital deaths or the need for ECMO in fetuses with isolated left CDH (iLCDH). STUDY TYPE Retrospective analysis. SUBJECTS One hundred thirty-nine fetuses were included in the iLCDH group (24 with adverse events and 115 without) and 257 fetuses were included in the control group from two centers in Guangzhou. FIELD STRENGTH/SEQUENCE 3.0 T, T2WI-TRUFI; 1.5 T, T2WI-FIESTA. ASSESSMENT Three operators independently measured the→ DL ,→ DR , and DH on the axial images. The calculation formula of the RMDI was (→ DL + → DR )/DH. STATISTICAL TESTS The independent sample t test, Mann-Whitney U test, Chi-square test, Chi-square test continuity correction, Fisher's test, linear regression analysis, logistic regression analysis, intraclass correlation coefficient, receiver operating characteristic curve analysis, and Delong test. A P value <0.05 was considered statistically significant. RESULTS The RMDI did not change with gestational age in the iLCDH group (with [P = 0.189] and without [P = 0.567] adverse events) and the control group (P = 0.876). There were significant differences in RMDI between the iLCDH group (0.89 [0.65, 1.00]) and the control group (-0.23 [-0.34, -0.16]). In the iLCDH group, RMDI was the only indicator left for indicating adverse events, and the best cutoff value was 1.105. Moreover, there was a significant difference in diagnostic accuracy between the RMDI (AUC = 0.900) and MSA (AUC = 0.820), LHR (AUC = 0.753), o/e LHR (AUC = 0.709), and o/e TFLV (AUC = 0.728), respectively. DATA CONCLUSION The RMDI is expected to be a simple and accurate tool for indicating adverse events in fetuses with iLCDH. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Fan Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | | | - Xin Zhang
- Guangzhou Medical University, Guangzhou, China
| | - Yuchao Li
- Guangzhou Medical University, Guangzhou, China
| | - Zhaoji Chen
- Guangzhou Medical University, Guangzhou, China
| | - Zhenqing Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Wangchun Dai
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
2
|
Patino M, Jaimes C, Robson CD. Fetal Head and Neck Imaging. Magn Reson Imaging Clin N Am 2024; 32:413-430. [PMID: 38944431 DOI: 10.1016/j.mric.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Prenatal MRI plays an essential role in the evaluation of the head and neck. This article overviews technical considerations and both isolated and syndromic anomalies of the fetal calvarium, globes and orbits, ears, maxilla, mandible, and neck.
Collapse
Affiliation(s)
- Manuel Patino
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA; Pediatric Imaging Research Center, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA; Pediatric Imaging Research Center, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Caroline D Robson
- Neuroradiology Division, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Main Building 2nd Floor, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Peña-Trujillo V, Gallo-Bernal S, Kirsch J, Victoria T, Gee MS. 3 Tesla Fetal MR Imaging Quality and Safety Considerations. Magn Reson Imaging Clin N Am 2024; 32:385-394. [PMID: 38944429 DOI: 10.1016/j.mric.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Medical imaging, particularly fetal MR imaging, has undergone a transformative shift with the introduction of 3 Tesla (3T) clinical MR imaging systems. The utilization of higher static magnetic fields in these systems has resulted in remarkable advancements, including superior soft tissue contrast, improved spatial and temporal resolution, and reduced image acquisition time. Despite these notable benefits, safety concerns have emerged, stemming from the elevated static magnetic field strength, amplified acoustic noise, and increased radiofrequency power deposition. This article provides an overview of fetal MR imaging at 3T, its benefits and drawbacks, and the potential safety issues.
Collapse
Affiliation(s)
- Valeria Peña-Trujillo
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA
| | - Sebastian Gallo-Bernal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Medicine, NYC Health + Hospitals/Queens, Icahn School of Medicine at Mount Sinai, 79-01 Broadway, Queens, NY 11373, USA
| | - John Kirsch
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th, Chartlestown, MA 02129, USA
| | - Teresa Victoria
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, 55 Fruit Strret, Boston, MA 02114, USA.
| |
Collapse
|
4
|
George E, Jaimes C, Xu D, Kasprian G, Glenn OA. How to Perform Fetal MR Imaging. Magn Reson Imaging Clin N Am 2024; 32:443-457. [PMID: 38944433 DOI: 10.1016/j.mric.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
This article provides the readers with practical guidance on how to perform fetal MR imaging, including technical considerations such as scanner field strength and use of appropriate radiofrequency receive coils, and summarizes the role, strengths, and limitations of the various MR imaging sequences. The authors review the various factors to consider in scan preparation, including study indication, timing, maternal preparation, and the creation of an institutional fetal imaging protocol. Additional factors that go into scan optimization during acquisition including prioritizing maternal comfort and ways to troubleshoot various artifacts that maybe encountered in fetal imaging are discussed.
Collapse
Affiliation(s)
- Elizabeth George
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Camilo Jaimes
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, 1700 4th Street BH303B, San Francisco, CA 94143, USA
| | - Gregor Kasprian
- Division of Neuroradiology, Department of Radiology and Biomedical Imaging, Medical University of Vienna, Währinger Gürtel 18-21, Vienna 1090, Austria
| | - Orit A Glenn
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Wang X, Huang SY, Yucel AC. Uncertainty Quantification in SAR Induced by Ultra-High-Field MRI RF Coil via High-Dimensional Model Representation. Bioengineering (Basel) 2024; 11:730. [PMID: 39061812 PMCID: PMC11274146 DOI: 10.3390/bioengineering11070730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
As magnetic field strength in Magnetic Resonance Imaging (MRI) technology increases, maintaining the specific absorption rate (SAR) within safe limits across human head tissues becomes challenging due to the formation of standing waves at a shortened wavelength. Compounding this challenge is the uncertainty in the dielectric properties of head tissues, which notably affects the SAR induced by the radiofrequency (RF) coils in an ultra-high-field (UHF) MRI system. To this end, this study introduces a computational framework to quantify the impacts of uncertainties in head tissues' dielectric properties on the induced SAR. The framework employs a surrogate model-assisted Monte Carlo (MC) technique, efficiently generating surrogate models of MRI observables (electric fields and SAR) and utilizing them to compute SAR statistics. Particularly, the framework leverages a high-dimensional model representation technique, which constructs the surrogate models of the MRI observables via univariate and bivariate component functions, approximated through generalized polynomial chaos expansions. The numerical results demonstrate the efficiency of the proposed technique, requiring significantly fewer deterministic simulations compared with traditional MC methods and other surrogate model-assisted MC techniques utilizing machine learning algorithms, all while maintaining high accuracy in SAR statistics. Specifically, the proposed framework constructs surrogate models of a local SAR with an average relative error of 0.28% using 289 simulations, outperforming the machine learning-based surrogate modeling techniques considered in this study. Furthermore, the SAR statistics obtained by the proposed framework reveal fluctuations of up to 30% in SAR values within specific head regions. These findings highlight the critical importance of considering dielectric property uncertainties to ensure MRI safety, particularly in 7 T MRI systems.
Collapse
Affiliation(s)
- Xi Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Shao Ying Huang
- Engineering Product Development Department, Singapore University of Technology and Design, Singapore 487372, Singapore;
| | - Abdulkadir C. Yucel
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| |
Collapse
|
6
|
Werner H, Santos IF, Giraldi GA, Lopes J, Ribeiro G, Lopes FP. Fetal magnetic resonance imaging artifacts: role of deep learning to improve imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:302-303. [PMID: 36840982 DOI: 10.1002/uog.26185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Affiliation(s)
- H Werner
- Instituto de Ensino e Pesquisa, Dasa (IEPD), Brazil
- BiodesignLab Dasa/PUC-Rio, Rio de Janeiro, Brazil
| | - I Félix Santos
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - G A Giraldi
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - J Lopes
- BiodesignLab Dasa/PUC-Rio, Rio de Janeiro, Brazil
| | - G Ribeiro
- BiodesignLab Dasa/PUC-Rio, Rio de Janeiro, Brazil
| | - F P Lopes
- Instituto de Ensino e Pesquisa, Dasa (IEPD), Brazil
- BiodesignLab Dasa/PUC-Rio, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Huang K, Lin X, Luo Y, Hu Q, Guo B, Ouyang F, Ouyang Y, Song C, Chen H. Image quality and evaluation ability of magnetic resonance imaging techniques for thyroid-associated ophthalmopathy: Dixon fat-suppression technique vs. spectral attenuated inversion recovery. Front Med (Lausanne) 2023; 10:1154828. [PMID: 37502355 PMCID: PMC10368892 DOI: 10.3389/fmed.2023.1154828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose We aimed to compare two magnetic resonance imaging (MRI) techniques, Dixon and spectral attenuated inversion recovery (SPAIR) fat-suppression, in terms of image quality and suitability for evaluating thyroid-associated ophthalmopathy (TAO) lesion characteristics. Methods This cross-sectional, retrospective study involved 70 patients with TAO (140 eyes) who underwent orbital coronal MRI examinations, including Dixon-transverse relaxation (T2)-weighted imaging (T2WI) and SPAIR-T2WI, between 2020 and 2022. We compared the fat-suppression quality and artifacts, noise (N), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal intensity ratio (SIR) of extraocular muscles (SIR-EOM) and lacrimal glands (SIR-LG), and TAO activity evaluation efficiency. Results Dixon-T2WI showed a higher frequency of better subjective image quality and suitability for evaluating the characteristics of TAO lesions (65.7% vs. 14.3%) than SPAIR-T2WI. Fat-suppression quality and artifact scores were lower for Dixon-T2WI than for SPAIR-T2WI (p < 0.001). The N, SNR, and CNR values, EOM-SIR, and LG-SIR were higher for orbital coronal Dixon-T2WI than for SPAIR-T2WI (all p < 0.001). Clinical activity scores (CASs) showed positive correlations with SIR. The correlation between EOM-SIR and LG-SIR of orbital coronal Dixon-T2WI with CAS was higher than that of SPAIR-T2WI (0.590 vs. 0.493, all p < 0.001; 0.340 vs. 0.295, all p < 0.01). EOM-SIR and LG-SIR of Dixon-T2WI yielded a higher area under the curve than SPAIR-T2WI for evaluating TAO activity (0.865 vs. 0.760, p < 0.001; 0.695 vs. 0.617, p = 0.017). Conclusion Dixon-T2WI yields higher image quality than SPAIR-T2WI. Furthermore, it has a stronger ability to evaluate TAO inflammation than SPAIR, with higher sensitivity and specificity in active TAO staging.
Collapse
Affiliation(s)
- Kai Huang
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xiaoxin Lin
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yaosheng Luo
- Department of Endocrinology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Qiugen Hu
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Baoliang Guo
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Fusheng Ouyang
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yufeng Ouyang
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Cheng Song
- Department of Endocrinology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Haixiong Chen
- Department of Radiology, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
8
|
van Amerom JFP, Goolaub DS, Schrauben EM, Sun L, Macgowan CK, Seed M. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023; 96:20211096. [PMID: 35687661 PMCID: PMC10321246 DOI: 10.1259/bjr.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.
Collapse
Affiliation(s)
- Joshua FP van Amerom
- Division of Translational Medicine, SickKids Research Institute, Toronto, Canada
| | | | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
9
|
Machado-Rivas F, Cortes-Albornoz MC, Afacan O, Bedoya MA, Calixto C, Choi JJ, Ruggiero M, Gholipour A, Jaimes C. Fetal MRI at 3 T: Principles to Optimize Success. Radiographics 2023; 43:e220141. [PMID: 36995947 PMCID: PMC10091224 DOI: 10.1148/rg.220141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 03/31/2023]
Abstract
Fetal MRI has emerged as a cornerstone of prenatal imaging, helping to establish the correct diagnosis in pregnancies affected by congenital anomalies. In the past decade, 3 T imaging was introduced as an alternative to increase the signal-to-noise ratio (SNR) of the pulse sequences and improve anatomic detail. However, imaging at a higher field strength is not without challenges. Many artifacts that are barely appreciable at 1.5 T are amplified at 3 T. A systematic approach to imaging at 3 T that incorporates appropriate patient positioning, a thoughtful protocol design, and sequence optimization minimizes the impact of these artifacts and allows radiologists to reap the benefits of the increased SNR. The sequences used are the same at both field strengths and include single-shot T2-weighted, balanced steady-state free-precession, three-dimensional T1-weighted spoiled gradient-echo, and echo-planar imaging. Synergistic use of these acquisitions to sample various tissue contrasts and in various planes provides valuable information about fetal anatomy and pathologic conditions. In the authors' experience, fetal imaging at 3 T outperforms imaging at 1.5 T for most indications when performed under optimal circumstances. The authors condense the cumulative experience of fetal imaging specialists and MRI technologists who practice at a large referral center into a guideline covering all major aspects of fetal MRI at 3 T, from patient preparation to image interpretation. © RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Fedel Machado-Rivas
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Maria Camila Cortes-Albornoz
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Onur Afacan
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Maria Alejandra Bedoya
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Camilo Calixto
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Jungwhan John Choi
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Matthew Ruggiero
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Ali Gholipour
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| | - Camilo Jaimes
- From the Department of Radiology, Boston Children’s Hospital,
300 Longwood Ave, Boston, MA 02215 (F.M.R., M.C.C.A., O.A., M.A.B., C.C., M.R.,
A.G., C.J.); Department of Radiology, Harvard Medical School, Boston, Mass
(J.J.C.); and Department of Radiology, Cincinnati Children’s Hospital,
Cincinnati, Ohio (F.M.R., M.C.C.A., O.A., M.A.B., C.C., A.G., C.J.)
| |
Collapse
|
10
|
Xie L, Xu H, He X, Fu H, Zhang L, Bai W, Li X, Bao L, Xu H, Li X, Guo Y. The potential of 1.5 T magnetic resonance imaging for the evaluation of fetal anomalies of the great vessels. Front Pediatr 2023; 11:1136892. [PMID: 37056942 PMCID: PMC10086421 DOI: 10.3389/fped.2023.1136892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/15/2023] Open
Abstract
Purpose To determine the efficacy of 1.5 T magnetic resonance imaging (MRI) for the diagnosis of anomalies of the fetal great arteries with comparison to fetal ultrasound, and to compare image quality between 1.5 T and 3.0 T MRI in fetal imaging of the great arteries. Methods We compared the results of postnatal exam or surgery and evaluated the application value of prenatal 1.5 T MRI in the assessment of fetal great-vessel anomalies. To further determine the diagnostic potential of 1.5 T MRI, 23 pregnant women with suspected fetal cardiovascular abnormalities who had undergone ultrasound and 3.0 T MRI were enrolled and compared, respectively. Results Prenatal MRI was superior to ultrasound in demonstrating aortic arch and branch abnormalities (sensitivity, 92.86% vs. 83.33%; specificity, 66.67% vs. 20%). The mean quality ratings for fetal MRI at 1.5 T was higher than 3.0 T (P < 0.001). Other than the fast scan speed afforded by 3.0 T MRI, the signal noise ratio (SNR) of 1.5 T MRI were higher than those of 3.0 T MRI; however, the difference in contrast to noise ratio (CNR) between the two imaging modalities was not statistically significant. Conclusions 1.5 T MRI can achieve an overall assessment of fetal great-vessel anomalies, especially aortic arch and branch abnormalities. Therefore, 1.5 T MRI can be considered a supplementary imaging modality for the prenatal assessment of extracardiac great vessels malformations.
Collapse
Affiliation(s)
- Linjun Xie
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Xu
- Department of Ultrasound, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Bai
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuesheng Li
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Bao
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Li
- National Center for Birth Defects Monitoring of China, West China Second University Hospital, Sichuan University; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Imaging fetal anatomy. Semin Cell Dev Biol 2022; 131:78-92. [PMID: 35282997 DOI: 10.1016/j.semcdb.2022.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Due to advancements in ultrasound techniques, the focus of antenatal ultrasound screening is moving towards the first trimester of pregnancy. The early first trimester however remains in part, a 'black box', due to the size of the developing embryo and the limitations of contemporary scanning techniques. Therefore there is a need for images of early anatomical developmental to improve our understanding of this area. By using new imaging techniques, we can not only obtain better images to further our knowledge of early embryonic development, but clear images of embryonic and fetal development can also be used in training for e.g. sonographers and fetal surgeons, or to educate parents expecting a child with a fetal anomaly. The aim of this review is to provide an overview of the past, present and future techniques used to capture images of the developing human embryo and fetus and provide the reader newest insights in upcoming and promising imaging techniques. The reader is taken from the earliest drawings of da Vinci, along the advancements in the fields of in utero ultrasound and MR imaging techniques towards high-resolution ex utero imaging using Micro-CT and ultra-high field MRI. Finally, a future perspective is given about the use of artificial intelligence in ultrasound and new potential imaging techniques such as synchrotron radiation-based CT to increase our knowledge regarding human development.
Collapse
|
12
|
Attention-guided deep learning for gestational age prediction using fetal brain MRI. Sci Rep 2022; 12:1408. [PMID: 35082346 PMCID: PMC8791965 DOI: 10.1038/s41598-022-05468-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetic resonance imaging offers unrivaled visualization of the fetal brain, forming the basis for establishing age-specific morphologic milestones. However, gauging age-appropriate neural development remains a difficult task due to the constantly changing appearance of the fetal brain, variable image quality, and frequent motion artifacts. Here we present an end-to-end, attention-guided deep learning model that predicts gestational age with R2 score of 0.945, mean absolute error of 6.7 days, and concordance correlation coefficient of 0.970. The convolutional neural network was trained on a heterogeneous dataset of 741 developmentally normal fetal brain images ranging from 19 to 39 weeks in gestational age. We also demonstrate model performance and generalizability using independent datasets from four academic institutions across the U.S. and Turkey with R2 scores of 0.81–0.90 after minimal fine-tuning. The proposed regression algorithm provides an automated machine-enabled tool with the potential to better characterize in utero neurodevelopment and guide real-time gestational age estimation after the first trimester.
Collapse
|
13
|
Stout JN, Bedoya MA, Grant PE, Estroff JA. Fetal Neuroimaging Updates. Magn Reson Imaging Clin N Am 2021; 29:557-581. [PMID: 34717845 PMCID: PMC8562558 DOI: 10.1016/j.mric.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MR imaging is used in conjunction with ultrasound screening for fetal brain abnormalities because it offers better contrast, higher resolution, and has multiplanar capabilities that increase the accuracy and confidence of diagnosis. Fetal motion still severely limits the MR imaging sequences that can be acquired. We outline the current acquisition strategies for fetal brain MR imaging and discuss the near term advances that will improve its reliability. Prospective and retrospective motion correction aim to make the complement of MR neuroimaging modalities available for fetal diagnosis, improve the performance of existing modalities, and open new horizons to understanding in utero brain development.
Collapse
Affiliation(s)
- Jeffrey N Stout
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - M Alejandra Bedoya
- Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - P Ellen Grant
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Judy A Estroff
- Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Maternal Fetal Care Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|