Berg A, Sailer J, Rand T, Moser E. Diffusivity- and T2 imaging at 3 Tesla for the detection of degenerative changes in human-excised tissue with high resolution: atherosclerotic arteries.
Invest Radiol 2003;
38:452-9. [PMID:
12821860 DOI:
10.1097/01.rli.0000068620.17569.83]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES
We investigated whether it is possible to investigate degenerative changes in human tissue on a sub-100-microm resolution scale not only on special high-field small-bore MR-microscopy systems but also on a 3T whole-body MR-scanner.
METHODS
Spin-spin relaxation, proton density, and diffusion microimaging were investigated in studying human atherosclerotic arteries. Strong diffusion weighting and high spatial resolution was achieved by means of a strong dedicated gradient system and a small birdcage radiofrequency resonator.
RESULTS
Quantitative parameter maps were obtained at voxel sizes down to 73 x 73 x 600 microm3. The morphologic structure and pathology connected to lipid deposits, plaques, small thrombi, and bifurcations were well visualized.
CONCLUSION
High-resolution parameter-weighted and parameter-imaging at sub-100-microm pixel resolution can be achieved for excised tissue on a 3.0 T whole body MR system. Perspectives for the characterization of atherosclerotic plaques imply not only cost advantages but also equivalence of contrast, especially as to T(2), for in vivo and high-resolution ex vivo investigations on the same MR scanner.
Collapse