1
|
Saadouli I, Mosbah A, Ferjani R, Stathopoulou P, Galiatsatos I, Asimakis E, Marasco R, Daffonchio D, Tsiamis G, Ouzari HI. The Impact of the Inoculation of Phosphate-Solubilizing Bacteria Pantoea agglomerans on Phosphorus Availability and Bacterial Community Dynamics of a Semi-Arid Soil. Microorganisms 2021; 9:1661. [PMID: 34442740 PMCID: PMC8400695 DOI: 10.3390/microorganisms9081661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/29/2022] Open
Abstract
The bacterial genus Pantoea has been widely evaluated as promising bacteria to increase phosphorus (P) availability in soil. The aim of this study was to characterize the phosphate solubilizing (PS) activity of a Pantoea agglomerans strain and to evaluate the impact of its application in a semi-arid soil on phosphate availability and structure of the bacterial communities as a whole. An incubation experiment under close-to-natural soil environmental conditions was conducted for 15 days at 30 °C. High-throughput sequencing of the bacterial 16S rRNA gene was used to characterize and to compare the bacterial community structure of P. agglomerans-inoculated soil with non-inoculated control. Furthermore, a qPCR-based method was developed for detection and quantification of the functional genes related to the expression of mineral phosphate solubilization (MPS) phenotype in P. agglomerans. The results showed that in vitro solubilization of Ca3(PO4)2 by P. agglomerans strain was very efficient (980 mg/L), and it was associated with a drop in pH due to the secretion of gluconic acid; these changes were concomitant with the detection of gdh and pqqC genes. Moreover, P. agglomerans inoculum application significantly increased the content of available P in semi-arid soil by 69%. Metagenomic analyses showed that P. agglomerans treatment modified the overall edaphic bacterial community, significantly impacting its structure and composition. In particular, during P. agglomerans inoculation the relative abundance of bacteria belonging to Firmicutes (mainly Bacilli class) significantly increased, whereas the abundance of Actinobacteria together with Acidobacteria and Chloroflexi phyla decreased. Furthermore, genera known for their phosphate solubilizing activity, such as Aneurinibacillus, Lysinibacillus, Enterococcus, and Pontibacter, were exclusively detected in P. agglomerans-treated soil. Pearson's correlation analysis revealed that changes in soil bacterial community composition were closely affected by soil characteristics, such as pH and available P. This study explores the effect of the inoculation of P. agglomerans on the bacterial community structure of a semi-arid soil. The effectiveness in improving the phosphate availability and modification in soil bacterial community suggested that P. agglomerans represent a promising environmental-friendly biofertilizer in arid and semi-arid ecosystems.
Collapse
Affiliation(s)
- Ilhem Saadouli
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| | - Amor Mosbah
- Higher Institute for Biotechnology (ISBST), LR Biotechnology and Bio-Geo Resources Valorization, University of Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia;
| | - Raoudha Ferjani
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Ioannis Galiatsatos
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Ramona Marasco
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (R.M.); (D.D.)
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (R.M.); (D.D.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Hadda-Imene Ouzari
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| |
Collapse
|
2
|
Porter SS, Faber-Hammond JJ, Friesen ML. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes. FEMS Microbiol Ecol 2017; 94:4705886. [DOI: 10.1093/femsec/fix168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Joshua J Faber-Hammond
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
- Department of Plant Pathology, Washington State University, P.O. Box 646430 Pullman, WA 99164, USA
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420 Pullman, WA 99164, USA
| |
Collapse
|
3
|
Reyes-González A, Talbi C, Rodríguez S, Rivera P, Zamorano-Sánchez D, Girard L. Expanding the regulatory network that controls nitrogen fixation in Sinorhizobium meliloti: elucidating the role of the two-component system hFixL-FxkR. MICROBIOLOGY-SGM 2016; 162:979-988. [PMID: 27010660 DOI: 10.1099/mic.0.000284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Sinorhizobium meliloti, nitrogen fixation is regulated in response to oxygen concentration through the FixL-FixJ two-component system (TCS). Besides this conserved TCS, the field isolate SM11 also encodes the hFixL-FxkR TCS, which is responsible for the microoxic response in Rhizobium etli. Through genetic and physiological assays, we evaluated the role of the hFixL-FxkR TCS in S. meliloti SM11. Our results revealed that this regulatory system activates the expression of a fixKf orthologue (fixKa), in response to low oxygen concentration. Null mutations in either hFixL or FxkR promote upregulation of fixK1, a direct target of FixJ. Furthermore, the absence of this TCS translates into higher nitrogen fixation values as well as higher expression of fixN1 in nodules. Individual mutations in each of the fixK-like regulators encoded in the S. meliloti SM11 genome do not completely restrict fixN1 or fixN2 expression, pointing towards redundancy among these regulators. Both copies of fixN are necessary to achieve optimal levels of nitrogen fixation. This work provides evidence that the hFixL-FxkR TCS is activated in response to low oxygen concentration in S. meliloti SM11 and that it negatively regulates the expression of fixK1, fixN1 and nitrogen fixation.
Collapse
Affiliation(s)
- Alma Reyes-González
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Instituto de Investigaciones Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Chouhra Talbi
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Susana Rodríguez
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Rivera
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - David Zamorano-Sánchez
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, USA
| | - Lourdes Girard
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
García AN, Ayub ND, Fox AR, Gómez MC, Diéguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G. Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC PLANT BIOLOGY 2014; 14:248. [PMID: 25227589 PMCID: PMC4177055 DOI: 10.1186/s12870-014-0248-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/11/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND The production of antimicrobial peptides is a common defense strategy of living cells against a wide range of pathogens. Plant snakin peptides inhibit bacterial and fungal growth at extremely low concentrations. However, little is known of their molecular and ecological characteristics, including origin, evolutionary equivalence, specific functions and activity against beneficial microbes. The aim of this study was to identify and characterize snakin-1 from alfalfa (MsSN1). RESULTS Phylogenetic analysis showed complete congruence between snakin-1 and plant trees. The antimicrobial activity of MsSN1 against bacterial and fungal pathogens of alfalfa was demonstrated in vitro and in vivo. Transgenic alfalfa overexpressing MsSN1 showed increased antimicrobial activity against virulent fungal strains. However, MsSN1 did not affect nitrogen-fixing bacterial strains only when these had an alfalfa origin. CONCLUSIONS The results reported here suggest that snakin peptides have important and ancestral roles in land plant innate immunity. Our data indicate a coevolutionary process, in which alfalfa exerts a selection pressure for resistance to MsSN1 on rhizobial bacteria. The increased antimicrobial activity against virulent fungal strains without altering the nitrogen-fixing symbiosis observed in MsSN1-overexpressing alfalfa transgenic plants opens the way to the production of effective legume transgenic cultivars for biotic stress resistance.
Collapse
Affiliation(s)
- Araceli Nora García
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - Nicolás Daniel Ayub
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - Ana Romina Fox
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - María Cristina Gómez
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - María José Diéguez
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - Elba María Pagano
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - Carolina Andrea Berini
- />Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), UBA-CONICET, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge Prometeo Muschietti
- />Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
- />Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Hector Torres”, (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Soto
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| |
Collapse
|
5
|
Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorhölter FJ, Weidner S, Goesmann A, Pühler A, Schlüter A. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. J Biotechnol 2011; 155:20-33. [DOI: 10.1016/j.jbiotec.2010.12.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/25/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
|
6
|
Guglielmetti S, Ciranna A, Mora D, Parini C, Karp M. Construction, characterization and exemplificative application of bioluminescent Bifidobacterium longum biovar longum. Int J Food Microbiol 2008; 124:285-90. [DOI: 10.1016/j.ijfoodmicro.2008.03.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 11/30/2022]
|
7
|
Stiens M, Becker A, Bekel T, Gödde V, Goesmann A, Niehaus K, Schneiker-Bekel S, Selbitschka W, Weidner S, Schlüter A, Pühler A. Comparative genomic hybridisation and ultrafast pyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomes of the model strain Rm1021 and the field isolate SM11. J Biotechnol 2008; 136:31-7. [PMID: 18562031 DOI: 10.1016/j.jbiotec.2008.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/09/2008] [Accepted: 04/22/2008] [Indexed: 11/28/2022]
Abstract
Genomic variation between the Sinorhizobium meliloti model strain Rm1021 and the field isolate SM11 was assessed by using the genome-wide S. meliloti Rm1021 Sm6k-oligonucleotide microarray in a comparative genomic hybridisation experiment. Several gene clusters present in the Rm1021 genome are missing in the SM11 genome. In detail, three missing gene clusters were identified for the chromosome, five for megaplasmid pSymA and two for megaplasmid pSymB. To confirm these hybridisation results, the draft genome sequence of the S. meliloti field isolate SM11 was established by 454-pyrosequencing. Three sequencing runs on the ultrafast Genome Sequencer 20 System yielded 112.5 million bases. These could be assembled into 905 larger contigs resulting in a nearly 15-fold coverage of the 7.1Mb SM11 genome. The missing gene regions identified by comparative genomic hybridisation could be confirmed by the results of the 454-sequencing project. An in-depth analysis of these gene regions resulted in the following findings: (i) a complete type I restriction/modification system encoded by a composite transposon is absent in the chromosome of strain SM11. (ii) Most of the Rm1021 denitrification genes and the complete siderophore biosynthesis operon were found to be missing on SM11 megaplasmid pSymA. (iii) S. meliloti SM11 megaplasmid pSymB lacks a complete cell surface carbohydrate synthesis gene cluster. (iv) Several genes that are absent in the SM11 genome could be assigned to insertion sequences and transposons.
Collapse
Affiliation(s)
- Michael Stiens
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:219-31. [PMID: 18184066 DOI: 10.1094/mpmi-21-2-0219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Collapse
Affiliation(s)
- Nataliya Pobigaylo
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
9
|
Kuhn S, Stiens M, Pühler A, Schlüter A. Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S. meliloti strains. FEMS Microbiol Ecol 2008; 63:118-31. [DOI: 10.1111/j.1574-6941.2007.00399.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Stiens M, Schneiker S, Pühler A, Schlüter A. Sequence analysis of the 181-kb accessory plasmid pSmeSM11b, isolated from a dominantSinorhizobium melilotistrain identified during a long-term field release experiment. FEMS Microbiol Lett 2007; 271:297-309. [PMID: 17466030 DOI: 10.1111/j.1574-6968.2007.00731.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The 181 251 bp accessory plasmid pSmeSM11b of Sinorhizobium meliloti strain SM11, belonging to a dominant indigenous S. meliloti subpopulation identified during a long-term field release experiment, was sequenced. This plasmid has 166 coding sequences (CDSs), 42% of which encode proteins with homology to proteins of known function. Plasmid pSmeSM11b is a member of the repABC replicon family and contains a large gene region coding for a conjugation system similar to that of other self-transmissible plasmids in Rhizobium and Agrobacterium. Another pSmeSM11b gene region, possibly involved in sugar metabolism and polysaccharide catabolism, resembled a region of S. meliloti 1021 megaplasmid pSymB and in the genome of Sinorhizobium medicae WSM419. Another module of plasmid pSmeSM11b encodes proteins similar to those of the nitrogen-fixing actinomycete Frankia CcI3, and which are likely to be involved in the synthesis of a secondary metabolite. Several ORFs of pSmeSM11b were predicted to play a role in nonribosomal peptide synthesis. Plasmid pSmeSM11b has many mobile genetic elements, which contribute to the mosaic composition of the plasmid.
Collapse
Affiliation(s)
- Michael Stiens
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | |
Collapse
|
11
|
Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A. Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 2006; 72:3662-72. [PMID: 16672515 PMCID: PMC1472397 DOI: 10.1128/aem.72.5.3662-3672.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.
Collapse
Affiliation(s)
- M Stiens
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|