1
|
Mandolini E, Bacher M, Peintner U. Ectomycorrhizal fungal communities of Swiss stone pine ( Pinus cembra) depend on climate and tree age in natural forests of the Alps. PLANT AND SOIL 2022; 502:167-180. [PMID: 39323574 PMCID: PMC11420379 DOI: 10.1007/s11104-022-05497-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 09/27/2024]
Abstract
Background and Aims Pinus cembra represent a typical and important tree species growing in European subalpine and alpine habitats. The ectomycorrhizal (ECM) fungal communities associated to this tree under natural conditions are largely unknown. Methods In this study, we investigated the ECM fungal abundance and composition at four high-altitude sites (two northern-exposed and two southern-exposed habitats) in South Tyrol (Italy), and included also two different age classes of P. cembra. The ECM partners were characterized morphologically, and identified by rDNA ITS sequence analysis. Results The degree of mycorrhization in adult P. cembra was typically 100% in these natural habitats, with a total species diversity of 20 ECM species. The four high-altitude sites were similar concerning their species richness and mycobiont diversity, but they differed significantly in ECM species composition. Young P. cembra had a mycorrhization degree of 100% and a total of 10 species were observed. All mycorrhizal partners of naturally regenerated young P. cembra were only detected in one specific location, with the exception of Cenococcum sp. and Amphinema sp. which were detected at two sites. Young trees harbour a distinct ectomycorrhizal fungal diversity, which is clearly lower than the diversity detected in adult P. cembra trees. The P. cembra bolete (Suillus plorans) is the most important symbiotic partner of P. cembra at Southern Tyrolean high-altitude sites and is known for its strict, species-specific host association. Conclusions The ectomycorrhizal fungal community composition strongly depends on geographic region and on the slope exposure (north or south) of the site. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-022-05497-z.
Collapse
Affiliation(s)
- Edoardo Mandolini
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25b, 6020 Innsbruck, Austria
| | - Margit Bacher
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25b, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25b, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Henry C, Raivoarisoa JF, Razafimamonjy A, Ramanankierana H, Andrianaivomahefa P, Ducousso M, Selosse MA. Transfer to forest nurseries significantly affects mycorrhizal community composition of Asteropeia mcphersonii wildings. MYCORRHIZA 2017; 27:321-330. [PMID: 27928691 DOI: 10.1007/s00572-016-0750-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Mycorrhizal symbiosis is extremely important for tree growth, survival and resistance after transplantation particularly in Madagascar where deforestation is a major concern. The importance of mycorrhizal symbiosis is further increased when soil conditions at the planting site are limiting. To identify technical itineraries capable of improving ecological restoration in Madagascar, we needed to obtain native ectomycorrhizal (ECM) saplings with a wide diversity of ECM fungi. To this end, we transplanted ECM seedlings from the wild (wildlings) to a nursery. Using molecular characterisation of internal transcribed spacer (ITS) rDNA, we tested the effect of transplanting Asteropeia mcphersonii wildlings on ECM communities after 8 months of growth in the nursery. With or without the addition of soil from the site where the seedlings were sampled to the nursery substrate, we observed a dramatic change in the composition of fungal communities with a decrease in the ECM infection rate, a tremendous increase in the abundance of an operational taxonomic unit (OTU) taxonomically close to the order Trechisporales and the disappearance of all OTUs of Boletales. Transplanting to the nursery and/or to nursery conditions was shown to be incompatible with the survival and even less with the development in the nursery of most ECM fungi naturally associated with A. mcphersonii wildings.
Collapse
Affiliation(s)
- Charline Henry
- AgroParisTech, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD/INRA/CIRAD/Montpellier SupAgro/Université Montpellier, TA10J, 34398, Montpellier Cedex 5, France
| | - Jeanne-Françoise Raivoarisoa
- Ambatovy, Immeuble Tranofitaratra-7ème étage, rue Ravoninahitriniarivo-Ankorondrano, 101, Antananarivo, Madagascar
| | - Angélo Razafimamonjy
- Ambatovy, Immeuble Tranofitaratra-7ème étage, rue Ravoninahitriniarivo-Ankorondrano, 101, Antananarivo, Madagascar
| | - Heriniaina Ramanankierana
- Laboratoire de Microbiologie de l'environnement, Centre National de Recherches sur l'Environnement, Antananarivo, Madagascar
| | - Paul Andrianaivomahefa
- Ambatovy, Immeuble Tranofitaratra-7ème étage, rue Ravoninahitriniarivo-Ankorondrano, 101, Antananarivo, Madagascar
| | - Marc Ducousso
- CIRAD, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD/INRA/CIRAD/Montpellier SupAgro/Université Montpellier, TA10C, 34398, Montpellier Cedex 5, France.
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP50, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| |
Collapse
|
3
|
Rentería-Chávez MC, Pérez-Moreno J, Cetina-Alcalá VM, Ferrera-Cerrato R, Xoconostle-Cázares B. Transferencia de nutrientes y crecimiento de Pinus greggii Engelm. inoculado con hongos comestibles ectomicorrícicos en dos sustratos. Rev Argent Microbiol 2017; 49:93-104. [DOI: 10.1016/j.ram.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 05/18/2016] [Accepted: 06/28/2016] [Indexed: 11/29/2022] Open
|
4
|
Trocha LK, Weiser E, Robakowski P. Interactive effects of juvenile defoliation, light conditions, and interspecific competition on growth and ectomycorrhizal colonization of Fagus sylvatica and Pinus sylvestris seedlings. MYCORRHIZA 2016; 26:47-56. [PMID: 26003665 PMCID: PMC4700103 DOI: 10.1007/s00572-015-0645-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/14/2015] [Indexed: 06/01/2023]
Abstract
Seedlings of forest tree species are exposed to a number of abiotic (organ loss or damage, light shortage) and biotic (interspecific competition) stress factors, which may lead to an inhibition of growth and reproduction and, eventually, to plant death. Growth of the host and its mycorrhizal symbiont is often closely linked, and hence, host damage may negatively affect the symbiont. We designed a pot experiment to study the response of light-demanding Pinus sylvestris and shade-tolerant Fagus sylvatica seedlings to a set of abiotic and biotic stresses and subsequent effects on ectomycorrhizal (ECM) root tip colonization, seedling biomass, and leaf nitrogen content. The light regime had a more pronounced effect on ECM colonization than did juvenile damage. The interspecific competition resulted in higher ECM root tip abundance for Pinus, but this effect was insignificant in Fagus. Low light and interspecific competition resulted in lower seedling biomass compared to high light, and the effect of the latter was partially masked by high light. Leaf nitrogen responded differently in Fagus and Pinus when they grew in interspecific competition. Our results indicated that for both light-demanding (Pinus) and shade-tolerant (Fagus) species, the light environment was a major factor affecting seedling growth and ECM root tip abundance. The light conditions favorable for the growth of seedlings may to some extent compensate for the harmful effects of juvenile organ loss or damage and interspecific competition.
Collapse
Affiliation(s)
- Lidia K Trocha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Ewa Weiser
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Piotr Robakowski
- Department of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71E, 60-625, Poznań, Poland
| |
Collapse
|
5
|
Fernández NV, Marchelli P, Fontenla SB. Ectomycorrhizas naturally established in Nothofagus nervosa seedlings under different cultivation practices in a forest nursery. MICROBIAL ECOLOGY 2013; 66:581-592. [PMID: 23636582 DOI: 10.1007/s00248-013-0229-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/11/2013] [Indexed: 06/02/2023]
Abstract
Mycorrhizas are mutualistic associations between soil fungi and plant roots which usually improve water and nutrient uptake, influencing plant fitness. Nothofagus nervosa (Raulí) is an ecologically and economically important species of South American temperate forests. Since this native tree species yields valuable timber, it was overexploited and its natural distribution area was critically reduced, so it is currently included in domestication and conservation programs. Among the factors that should be considered in these programs are the ectomycorrhizas (EcM), which would be important for the successful establishment and survival of outplanted seedlings. The aim of this work was to analyze the abundance and diversity of EcM in N. nervosa nursery-cultivated seedlings assessed by morphotyping, fungal isolation, and DNA sequencing. Arbuscular mycorrhiza (AM) occurrence was also studied. A 2-year trial was conducted following the cultivation conditions used for domestication programs. Seedlings were cultivated under two different cultivation practices (greenhouse and nursery soil) without artificial inoculation of mycorrhizal fungi. Seedlings' roots were examined at different times. It was observed that they developed EcM between 6 and 12 months after germination and AMs were not detected in any plant. The most abundant ectomycorrhizal fungi present in seedlings' roots were Tomentella ellisii (Basidiomycota) and an unidentified fungus named Ascomicetous EcM sp. 1. Abundance and diversity of EcM varied between the two cultivation techniques analyzed in this study, since seedlings that continued growing in the greenhouse had higher colonization values, but those transplanted to the nursery soil were colonized by a higher diversity of fungal taxa.
Collapse
Affiliation(s)
- Natalia V Fernández
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, INIBIOMA, Quintral 1250, San Carlos de Bariloche, CP 8400, Río Negro, Argentina,
| | | | | |
Collapse
|
6
|
Leski T, Rudawska M. Ectomycorrhizal fungal community of naturally regenerated European larch (Larix decidua) seedlings. Symbiosis 2012. [DOI: 10.1007/s13199-012-0164-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Trocha LK, Kałucka I, Stasińska M, Nowak W, Dabert M, Leski T, Rudawska M, Oleksyn J. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees. MYCORRHIZA 2012; 22:121-34. [PMID: 21573837 PMCID: PMC3261385 DOI: 10.1007/s00572-011-0387-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/02/2011] [Indexed: 05/22/2023]
Abstract
Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.
Collapse
Affiliation(s)
- Lidia K Trocha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Menkis A, Vasaitis R. Fungi in roots of nursery grown Pinus sylvestris: ectomycorrhizal colonisation, genetic diversity and spatial distribution. MICROBIAL ECOLOGY 2011; 61:52-63. [PMID: 20437259 DOI: 10.1007/s00248-010-9676-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/09/2010] [Indexed: 05/29/2023]
Abstract
The aims of this study were to investigate patterns of ectomycorrhizal (ECM) colonisation and community structure on nursery grown seedlings of Pinus sylvestris, spatial distribution of ECMs in the nursery plot and genetic diversity of commonly isolated ECM basidiomycete Hebeloma cavipes. One hundred seedlings were sampled in 225 m(2) area using a systematic grid design. For each seedling, 20 individual root tips were randomly collected, morphotyped, and surface sterilised for fungal isolation in pure culture. Results showed that ECM community was comprised of nine distinct morphotypes among which Thelephora terrestris (39.7%), Hebeloma sp. (17.8%) and Suillus luteus (6.1%) were the most abundant. Spatial distribution of ECMs in the nursery plot was determined by their relative abundance: even in common ECMs and random in rare ones. Fungal isolation yielded 606 pure cultures, representing 71 distinct taxa. The most commonly isolated fungi were the ascomycetes Neonectria macrodidyma (20.3%), Phialocephala fortinii (13.5%), Neonectria radicicola (6.3%) and the ECM basidiomycete H. cavipes (4.5%). Intraspecific genetic diversity within 27 H. cavipes isolates was studied using two methods: restriction digestion of the amplified intergenic spacer of nuclear ribosomal DNA and genealogical concordance of five genetic markers. Five and eight genotypes were revealed by each respective method, but both of those were largely consistent, in particular, in determining the largest genotype (A) composed of 18 isolates. Mapping positions for each H. cavipes isolate and genotype in the field showed that isolates of the A genotype covered a large part of the nursery plot. This suggests that H. cavipes is largely disseminated by vegetative means of local genotypes and that nursery cultivation practices are likely to contribute to the dissemination of this species in the forest nursery soils.
Collapse
Affiliation(s)
- Audrius Menkis
- Uppsala BioCenter, Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden.
| | | |
Collapse
|
9
|
Leski T, Aucina A, Skridaila A, Pietras M, Riepsas E, Rudawska M. Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. MYCORRHIZA 2010; 20:473-481. [PMID: 20155377 DOI: 10.1007/s00572-010-0298-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/20/2010] [Indexed: 05/28/2023]
Abstract
In this paper, we report the effect of Scots pine genotypes on ectomycorrhizal (ECM) community and growth, survival, and foliar nutrient composition of 2-year-old seedlings grown in forest bare-root nursery conditions in Lithuania. The Scots pine seeds originated from five stands from Latvia (P1), Lithuania (P2 and P3), Belarus (P4), and Poland (P5). Based on molecular identification, seven ECM fungal taxa were identified: Suillus luteus and Suillus variegatus (within the Suilloid type), Wilcoxina mikolae, Tuber sp., Thelephora terrestris, Cenococcum geophilum, and Russuloid type. The fungal species richness varied between five and seven morphotypes, depending on seed origin. The average species richness and relative abundance of most ECM morphotypes differed significantly depending on pine origin. The most essential finding of our study is the shift in dominance from an ascomycetous fungus like W. mikolae in P2 and P4 seedlings to basidiomycetous Suilloid species like S. luteus and S. variegatus in P1 and P5 seedlings. Significant differences between Scots pine origin were also found in seedling height, root dry weight, survival, and concentration of C, K, Ca, and Mg in the needles. The Spearman rank correlation coefficient revealed that survival and nutritional status of pine seedlings were positively correlated with abundance of Suilloid mycorrhizas and negatively linked with W. mikolae abundance. However, stepwise multiple regression analysis showed that only survival and magnesium content in pine needles were significantly correlated with abundance of ECM fungi, and Suilloid mycorrhizas were a main significant predictor. Our results may have implications for understanding the physiological and genetic relationship between the host tree and fungi and should be considered in management decisions in forestry and ECM fungus inoculation programs.
Collapse
Affiliation(s)
- Tomasz Leski
- Institute of Dendrology, Polish Academy of Sciences, 5 Parkowa Str., 62-035 Kórnik, Poland
| | | | | | | | | | | |
Collapse
|
10
|
Stefani FOP, Tanguay P, Pelletier G, Piché Y, Hamelin RC. Impact of endochitinase-transformed white spruce on soil fungal biomass and ectendomycorrhizal symbiosis. Appl Environ Microbiol 2010; 76:2607-14. [PMID: 20173071 PMCID: PMC2849194 DOI: 10.1128/aem.02807-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/08/2010] [Indexed: 11/20/2022] Open
Abstract
The impact of transgenic white spruce [Picea glauca (Moench) Voss] containing the endochitinase gene (ech42) on soil fungal biomass and on the ectendomycorrhizal fungi Wilcoxina spp. was tested using a greenhouse trial. The measured level of endochitinase in roots of transgenic white spruce was up to 10 times higher than that in roots of nontransformed white spruce. The level of endochitinase in root exudates of three of four ech42-transformed lines was significantly greater than that in controls. Analysis soil ergosterol showed that the amount of fungal biomass in soil samples from control white spruce was slightly larger than that in soil samples from ech42-transformed white spruce. Nevertheless, the difference was not statistically significant. The rates of mycorrhizal colonization of transformed lines and controls were similar. Sequencing the internal transcribed spacer rRNA region revealed that the root tips were colonized by the ectendomycorrhizal fungi Wilcoxina spp. and the dark septate endophyte Phialocephala fortinii. Colonization of root tips by Wilcoxina spp. was monitored by real-time PCR to quantify the fungus present during the development of ectendomycorrhizal symbiosis in ech42-transformed and control lines. The numbers of Wilcoxina molecules in the transformed lines and the controls were not significantly different (P > 0.05, as determined by analysis of covariance), indicating that in spite of higher levels of endochitinase expression, mycorrhization was not inhibited. Our results indicate that the higher levels of chitinolytic activity in root exudates and root tissues from ech42-transformed lines did not alter the soil fungal biomass or the development of ectendomycorrhizal symbiosis involving Wilcoxina spp.
Collapse
Affiliation(s)
- Franck O P Stefani
- Université Laval, Faculté de Foresterie, de Géographie et de Géomatique, Pavillon Abitibi-Price, 2405 Rue de la Terrasse, Québec, QC G1V 0A6, Canada.
| | | | | | | | | |
Collapse
|
11
|
Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. MYCORRHIZA 2010; 20:217-63. [PMID: 20191371 DOI: 10.1007/s00572-009-0274-x] [Citation(s) in RCA: 517] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 08/13/2009] [Indexed: 05/11/2023]
Abstract
The ectomycorrhizal (EcM) symbiosis involves a large number of plant and fungal taxa worldwide. During studies on EcM diversity, numerous misidentifications, and contradictory reports on EcM status have been published. This review aims to: (1) critically assess the current knowledge of the fungi involved in the EcM by integrating data from axenic synthesis trials, anatomical, molecular, and isotope studies; (2) group these taxa into monophyletic lineages based on molecular sequence data and published phylogenies; (3) investigate the trophic status of sister taxa to EcM lineages; (4) highlight other potentially EcM taxa that lack both information on EcM status and DNA sequence data; (5) recover the main distribution patterns of the EcM fungal lineages in the world. Based on critically examining original reports, EcM lifestyle is proven in 162 fungal genera that are supplemented by two genera based on isotopic evidence and 52 genera based on phylogenetic data. Additionally, 33 genera are highlighted as potentially EcM based on habitat, although their EcM records and DNA sequence data are lacking. Molecular phylogenetic and identification studies suggest that EcM symbiosis has arisen independently and persisted at least 66 times in fungi, in the Basidiomycota, Ascomycota, and Zygomycota. The orders Pezizales, Agaricales, Helotiales, Boletales, and Cantharellales include the largest number of EcM fungal lineages. Regular updates of the EcM lineages and genera therein can be found at the UNITE homepage http://unite.ut.ee/EcM_lineages . The vast majority of EcM fungi evolved from humus and wood saprotrophic ancestors without any obvious reversals. Herbarium records from 11 major biogeographic regions revealed three main patterns in distribution of EcM lineages: (1) Austral; (2) Panglobal; (3) Holarctic (with or without some reports from the Austral or tropical realms). The holarctic regions host the largest number of EcM lineages; none are restricted to a tropical distribution with Dipterocarpaceae and Caesalpiniaceae hosts. We caution that EcM-dominated habitats and hosts in South America, Southeast Asia, Africa, and Australia remain undersampled relative to the north temperate regions. In conclusion, EcM fungi are phylogenetically highly diverse, and molecular surveys particularly in tropical and south temperate habitats are likely to supplement to the present figures. Due to great risk of contamination, future reports on EcM status of previously unstudied taxa should integrate molecular identification tools with axenic synthesis experiments, detailed morphological descriptions, and/or stable isotope investigations. We believe that the introduced lineage concept facilitates design of biogeographical studies and improves our understanding about phylogenetic structure of EcM fungal communities.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences and Natural History Museum of Tartu University, 40 Lai Street, 51005, Tartu, Estonia.
| | | | | |
Collapse
|
12
|
Leski T, Pietras M, Rudawska M. Ectomycorrhizal fungal communities of pedunculate and sessile oak seedlings from bare-root forest nurseries. MYCORRHIZA 2010; 20:179-190. [PMID: 19756776 DOI: 10.1007/s00572-009-0278-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
In this study, we present the detailed molecular investigation of the ectomycorrhizal (ECM) community of Quercus petraea and Quercus robur seedlings grown in bare-root forest nurseries. In all tested oak samples, mycorrhizal colonization was nearly 100%. Morphological observation and molecular investigations (sequencing of fungal ITS rDNA) revealed a total of 23 mycorrhizal taxa. The most frequent and abundant fungal taxa were Hebeloma sacchariolens, Tuber sp., and Peziza sp.; from the detected fungal taxa, 20 were noted for Q. petraea and 23 for Q. robur. Depending on the nursery, the species richness of identified ECM fungal taxa for both oak species ranged from six to 11 taxa. The mean species richness for all nurseries was 5.36 and 5.82 taxa per Q. petraea and Q. robur sample, respectively. According to the analysis of similarity, ECM fungal communities were similar for Q. petraea and Q. robur (R = 0.019; p = 0.151). On the other hand, detected fungal communities were significantly different between nurseries (R = 0.927; p < 0.0001). Using the Spearman rank correlation, it was determined that the ectomycorrhizal diversity (in terms of richness, the Shannon diversity, evenness, and Simpson dominance indices) is significantly related to the soil parameters of each nursery. We conclude that individual nursery may be considered as separate ecological niches that strongly discriminate diversity of ECM fungi.
Collapse
Affiliation(s)
- Tomasz Leski
- Institute of Dendrology Polish Academy of Sciences, Kornik, Poland
| | | | | |
Collapse
|
13
|
Ogura-Tsujita Y, Yukawa T. Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan. MYCORRHIZA 2008; 18:331-8. [PMID: 18661158 DOI: 10.1007/s00572-008-0187-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 07/01/2008] [Indexed: 05/20/2023]
Abstract
Epipactis helleborine (L.) Crantz, one of the most widespread orchid species, occurs in a broad range of habitats. This orchid is fully myco-heterotrophic in the germination stage and partially myco-heterotrophic in the adult stage, suggesting that a mycorrhizal partner is one of the key factors that determines whether E. helleborine successfully colonizes a specific environment. We focused on the coastal habitat of Japanese E. helleborine and surveyed the mycorrhizal fungi from geographically different coastal populations that grow in Japanese black pine (Pinus thunbergii Parl.) forests of coastal sand dunes. Mycorrhizal fungi and plant haplotypes were then compared with those from inland populations. Molecular phylogenetic analysis of large subunit rRNA sequences of fungi from its roots revealed that E. helleborine is mainly associated with several ectomycorrhizal taxa of the Pezizales, such as Wilcoxina, Tuber, and Hydnotrya. All individuals from coastal dunes were exclusively associated with a pezizalean fungus, Wilcoxina, which is ectomycorrhizal with pine trees growing on coastal dunes. Wilcoxina was not detected in inland forests. Coastal populations were indistinguishable from inland populations based on plant trnL intron haplotypes. Our results indicate that mycorrhizal association with geographically restricted pezizalean ectomycorrhizal fungi is a key control upon this orchid species' distribution across widely different forest habitats.
Collapse
Affiliation(s)
- Yuki Ogura-Tsujita
- Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan.
| | | |
Collapse
|
14
|
Aucina A, Rudawska M, Leski T, Skridaila A, Riepsas E, Iwanski M. Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter. Appl Environ Microbiol 2007; 73:4867-73. [PMID: 17575001 PMCID: PMC1951017 DOI: 10.1128/aem.00584-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/04/2007] [Indexed: 11/20/2022] Open
Abstract
We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities.
Collapse
Affiliation(s)
- Algis Aucina
- Botanical Garden of Vilnius University, Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|