1
|
Yamazaki Y, Sakai Y, Yu J, Mino S, Sawabe T. Tracking the dynamics of individual gut microbiome of sea cucumber Apostichopus japonicus during gut regeneration. PeerJ 2020; 8:e10260. [PMID: 33344070 PMCID: PMC7718794 DOI: 10.7717/peerj.10260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Sea cucumbers possess the remarkable capacity to regenerate their body parts or organs. Regeneration of host organs and/or body parts involves reconstruction of the host associated microbiota, however, the dynamics and contribution of microbiota to the regeneration process are largely unknown due to a lack of experimental models. To track the dynamics of individual gut microbiomes during gut regeneration, both caged mariculture and laboratory isolator systems of sea cucumbers (Apostichopus japonicus) were developed and longitudinal meta16S analyses were performed. Under natural environmental conditions in the caged mariculture system, both bacterial and eukaryotic communities in sea cucumbers' guts appeared to be reconstructed within 4 months after evisceration. Using the laboratory isolator, which can trace daily dynamics, we found that fecal microbiota collected before evisceration were clearly different from those collected after evisceration. We also identified eight key bacteria, belonging to Alteromonadaceae, Rhodobacteraceae, Oceanospirillaceae and family-unassigned Gammaproteobacteria, suggesting that these bacteria might interact with the host during the gut regeneration process. Six of the eight key bacteria were isolated for further bioassay using the isolator developed in this study to test whether these isolates affect gut regeneration.
Collapse
Affiliation(s)
- Yohei Yamazaki
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
2
|
Gao W, Zhang L. Comparative analysis of the microbial community composition between Tibetan kefir grains and milks. Food Res Int 2019; 116:137-144. [DOI: 10.1016/j.foodres.2018.11.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
|
3
|
Kalenitchenko D, Dupraz M, Le Bris N, Petetin C, Rose C, West NJ, Galand PE. Ecological succession leads to chemosynthesis in mats colonizing wood in sea water. THE ISME JOURNAL 2016; 10:2246-58. [PMID: 26905628 PMCID: PMC4989304 DOI: 10.1038/ismej.2016.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
Chemosynthetic mats involved in cycling sulfur compounds are often found in hydrothermal vents, cold seeps and whale falls. However, there are only few records of wood fall mats, even though the presence of hydrogen sulfide at the wood surface should create a perfect niche for sulfide-oxidizing bacteria. Here we report the growth of microbial mats on wood incubated under conditions that simulate the Mediterranean deep-sea temperature and darkness. We used amplicon and metagenomic sequencing combined with fluorescence in situ hybridization to test whether a microbial succession occurs during mat formation and whether the wood fall mats present chemosynthetic features. We show that the wood surface was first colonized by sulfide-oxidizing bacteria belonging to the Arcobacter genus after only 30 days of immersion. Subsequently, the number of sulfate reducers increased and the dominant Arcobacter phylotype changed. The ecological succession was reflected by a change in the metabolic potential of the community from chemolithoheterotrophs to potential chemolithoautotrophs. Our work provides clear evidence for the chemosynthetic nature of wood fall ecosystems and demonstrates the utility to develop experimental incubation in the laboratory to study deep-sea chemosynthetic mats.
Collapse
Affiliation(s)
- Dimitri Kalenitchenko
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Marlène Dupraz
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Nadine Le Bris
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Carole Petetin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), Banyuls sur Mer, France
| | - Christophe Rose
- UMR EEF INRA/UL, Plateforme Technique d'Ecologie et d'Ecophysiologie Forestières (PTEF), INRA-LORRAINE, Champenoux, France
| | - Nyree J West
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| |
Collapse
|
4
|
Arotsker L, Kramarsky-Winter E, Ben-Dov E, Siboni N, Kushmaro A. Changes in the bacterial community associated with black band disease in a Red Sea coral, Favia sp., in relation to disease phases. DISEASES OF AQUATIC ORGANISMS 2015; 116:47-58. [PMID: 26378407 DOI: 10.3354/dao02911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Changes of the black band disease (BBD)-associated microbial consortium on the surface of a Favia sp. coral colony were assessed in relation to the different disease phases. A number of highly active bacterial groups changed in numbers as the BBD disease signs changed. These included Gamma- and Epsilonproteobacteria, Bacteroidetes and Firmicutes groups. One cyanobacterium strain, BGP10_4ST (FJ210722), was constantly present in the disease interface and adjacent tissues of the affected corals, regardless of disease phase. The dynamics of the operational taxonomic units (OTUs) of this BBD-specific strain provide a marker regarding the disease phase. The disease's active phase is characterized by a wide dark band progressing along the tissue-skeleton interface and by numerous bacterial OTUs. Cyanobacterial OTUs decreased in numbers as the disease signs waned, perhaps opening a niche for additional microorganisms. Even when black band signs disappeared there was a consistent though low abundance of the BBD-specific cyanobacteria (BGP10_4ST), and the microbial community of the disease-skeleton interface remained surprisingly similar to the original band community. These results provide an indication that the persistence of even low numbers of this BBD-specific cyanobacterium in coral tissues during the non-active (or subclinical) state could facilitate reinitiation of BBD signs during the following summer. This may indicate that this bacterium is major constituent of the disease and that its persistence and ability to infiltrate the coral tissues may act to facilitate the assembly of the other BBD-specific groups of bacteria.
Collapse
Affiliation(s)
- Luba Arotsker
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
5
|
Ben-Dov E, Shapiro OH, Kushmaro A. 'Next-base' effect on PCR amplification. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:183-188. [PMID: 23757271 DOI: 10.1111/j.1758-2229.2011.00318.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The base adjacent to the 3' end of universal PCR primers targeting the 16S rRNA gene is often variable and apparently biases the microbial community composition as represented by PCR-based surveys. To test this hypothesis, four templates of 44 bases each and two complementary primers (21 bases) were designed to differ only in the bases adjacent to the primers, and their amplification efficiencies were evaluated using quantitative PCR. For extension temperatures of 72°C, 73°C and 74°C, improvement in initial amplification efficiency was observed for templates with guanine or cytosine at the position contiguous to the primers. However, no clear preference was observed when extension temperature was lowered to 70°C. Shortening the primers by one base, so that the variable position was located two base pairs downstream from the primer, attenuated but did not eliminate this bias. A conformational change of the quaternary polymerase - primer - template - dNTP complex upon commencing of polymerization is thought to be a rate-limiting step. A possible explanation for the observed bias is the stabilization of this complex by the adjacent guanine or cytosine. Reducing PCR extension temperature to 70°C minimizes amplification biases caused by variable template-contiguous bases to the 3' end of universal PCR primers. Next-base nucleotide composition should be taken in consideration in designing primers targeting 16S rRNA or other functional genes used in microbial ecology studies.
Collapse
Affiliation(s)
- Eitan Ben-Dov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Be'er Sheva 84105, Israel Achva Academic College MP Shikmim, 79800, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | |
Collapse
|
6
|
Stat M, Baker AC, Bourne DG, Correa AMS, Forsman Z, Huggett MJ, Pochon X, Skillings D, Toonen RJ, van Oppen MJH, Gates RD. Molecular delineation of species in the coral holobiont. ADVANCES IN MARINE BIOLOGY 2012; 63:1-65. [PMID: 22877610 DOI: 10.1016/b978-0-12-394282-1.00001-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The coral holobiont is a complex assemblage of organisms spanning a diverse taxonomic range including a cnidarian host, as well as various dinoflagellate, prokaryotic and acellular symbionts. With the accumulating information on the molecular diversity of these groups, binomial species classification and a reassessment of species boundaries for the partners in the coral holobiont is a logical extension of this work and will help enhance the capacity for comparative research among studies. To aid in this endeavour, we review the current literature on species diversity for the three best studied partners of the coral holobiont (coral, Symbiodinium, prokaryotes) and provide suggestions for future work on systematics within these taxa. We advocate for an integrative approach to the delineation of species using both molecular genetics in combination with phenetic characters. We also suggest that an a priori set of criteria be developed for each taxonomic group as no one species concept or accompanying set of guidelines is appropriate for delineating all members of the coral holobiont.
Collapse
Affiliation(s)
- Michael Stat
- Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaii, Kaneohe, HI, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|