1
|
Balmaseda A, Lorentzen M, Dutilh L, Bauduin R, Guichard H, Ollivier S, Miot-Sertier C, Lucas PM. Alcoholic fermentation drives the selection of Oenococcus oeni strains in wine but not in cider. Int J Food Microbiol 2023; 400:110276. [PMID: 37270987 DOI: 10.1016/j.ijfoodmicro.2023.110276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D. Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B + C, and D, respectively, although B and C strains were also detected in wine. This study was performed to better understand the distribution of the phylogroups in wine and cider. Their population dynamics were determined by qPCR all through wine and cider productions, and the behavior of the strains was analyzed in synthetic wines and ciders. Phylogroups A, B and C were all represented in grape must and throughout the alcoholic fermentation, but on the transition to MLF, only phylogroup A remained at high levels in all wine productions. In the case of cider, phylogroups A, B and C were detected in stable levels during the process. When they were tested in synthetic wine and cider, all phylogroups performed MLF, but with different survival rates depending on the ethanol content. In this sense, ethanol and fermentation kinetics are the main agent that drives the selection of phylogroup A strains in wine, while B and C strains dominates in cider containing less ethanol.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, F-33170 Gradignan, France; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/Marcel·líDomingo 1, 43007 Tarragona, Catalonia, Spain.
| | - Marc Lorentzen
- Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, F-33170 Gradignan, France
| | - Lucie Dutilh
- Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, F-33170 Gradignan, France
| | - Rémi Bauduin
- Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, Le Rheu 35653, France
| | - Hugues Guichard
- Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, Le Rheu 35653, France
| | - Séverine Ollivier
- Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, Le Rheu 35653, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, F-33170 Gradignan, France
| | - Patrick M Lucas
- Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, F-33170 Gradignan, France
| |
Collapse
|
2
|
Zhao H, Li Y, Liu L, Zheng M, Feng Z, Hu K, Tao Y. Effects of inoculation timing and mixed fermentation with Pichia fermentans on Oenococcus oeni viability, fermentation duration and aroma production during wine malolactic fermentation. Food Res Int 2022; 159:111604. [DOI: 10.1016/j.foodres.2022.111604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
|
3
|
Lorentzen MPG, Lucas PM. Distribution of Oenococcus oeni populations in natural habitats. Appl Microbiol Biotechnol 2019; 103:2937-2945. [PMID: 30788540 PMCID: PMC6447504 DOI: 10.1007/s00253-019-09689-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022]
Abstract
Oenococcus oeni is the lactic acid bacteria species most commonly encountered in wine, where it develops after the alcoholic fermentation and achieves the malolactic fermentation that is needed to improve the quality of most wines. O. oeni is abundant in the oenological environment as well as in apple cider and kombucha, whereas it is a minor species in the natural environment. Numerous studies have shown that there is a great diversity of strains in each wine region and in each product or type of wine. Recently, genomic studies have shed new light on the species diversity, population structure, and environmental distribution. They revealed that O. oeni has unique genomic features that have contributed to its fast evolution and adaptation to the enological environment. They have also unveiled the phylogenetic diversity and genomic properties of strains that develop in different regions or different products. This review explores the distribution of O. oeni and the diversity of strains in natural habitats.
Collapse
Affiliation(s)
- Marc P. G. Lorentzen
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F-33882 Villenave d’Ornon, France
| | - Patrick M. Lucas
- Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F-33882 Villenave d’Ornon, France
| |
Collapse
|
4
|
Brizuela N, Tymczyszyn EE, Semorile LC, Valdes La Hens D, Delfederico L, Hollmann A, Bravo-Ferrada B. Lactobacillus plantarum as a malolactic starter culture in winemaking: A new (old) player? ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
5
|
De Roos J, Vandamme P, De Vuyst L. Wort Substrate Consumption and Metabolite Production During Lambic Beer Fermentation and Maturation Explain the Successive Growth of Specific Bacterial and Yeast Species. Front Microbiol 2018; 9:2763. [PMID: 30510547 PMCID: PMC6252343 DOI: 10.3389/fmicb.2018.02763] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The present study combined high-throughput culture-dependent plating and culture-independent amplicon sequencing with a metabolite target analysis to systematically dissect the identity, evolution, and role of the microorganisms, substrates, and metabolites during the four-phase fermentation and maturation process of lambic beer production. This led to the following new insights. The changing physicochemical parameters and substrate and metabolite compositions of the fermenting wort and maturing lambic beer provoked several transitions between microbial species and explained the four-step production process. Manual wort acidification with lactic acid shortened the enterobacterial phase and thus kept biogenic amine formation by enterobacteria present during the early stages of fermentation at a minimum. Growth advantages during the alcoholic fermentation phase caused a transition from the prevalence by Hanseniaspora uvarum and Kazachstania species to that by Saccharomyces cerevisiae and later on Saccharomyces kudriavzevii, due to changing environmental parameters. During the acidification phase, Pediococcus damnosus was prevalent and performed a malolactic fermentation. Acetobacter pasteurianus produced acetic acid and acetoin. Upon maturation, Dekkera species appeared, together with P. damnosus and Pichia membranifaciens, thereby contributing to acetic acid production, depending on the oxygen availability. Moreover, the Dekkera species consumed the acetoin produced by the acetic acid bacteria for redox balancing. The breakdown of maltooligosaccharides seemed to be independent of the occurrence of Dekkera species and started already early in the fermentation process.
Collapse
Affiliation(s)
- Jonas De Roos
- Research Group of Industrial Microbiology and Food Biotechnology, Bioengineering Sciences Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Vandamme
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Bioengineering Sciences Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Bonomo MG, Di Tomaso K, Calabrone L, Salzano G. Ethanol stress in Oenococcus oeni: transcriptional response and complex physiological mechanisms. J Appl Microbiol 2018; 125:2-15. [PMID: 29377375 DOI: 10.1111/jam.13711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
Oenococcus oeni is the dominant species able to cope with a hostile environment of wines, comprising cumulative effects of low pH, high ethanol and SO2 content, nonoptimal growth temperatures and growth inhibitory compounds. Ethanol tolerance is a crucial feature for the activity of O. oeni cells in wine because ethanol acts as a disordering agent of its cell membrane and negatively affects metabolic activity; it damages the membrane integrity, decreases cell viability and, as other stress conditions, delays the start of malolactic fermentation with a consequent alteration of wine quality. The cell wall, cytoplasmic membrane and metabolic pathways are the main sites involved in physiological changes aimed to ensure an adequate adaptive response to ethanol stress and to face the oxidative damage caused by increasing production of reactive oxygen species. Improving our understanding of the cellular impact of ethanol toxicity and how the cell responds to ethanol stress can facilitate the development of strategies to enhance microbial ethanol tolerance; this allows to perform a multidisciplinary endeavour requiring not only an ecological study of the spontaneous process but also the characterization of useful technological and physiological features of the predominant strains in order to select those with the highest potential for industrial applications.
Collapse
Affiliation(s)
- M G Bonomo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - K Di Tomaso
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy.,Ph.D School in Applied and Environmental Safeguard, Università degli Studi della Basilicata, Potenza, Italy
| | - L Calabrone
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - G Salzano
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
7
|
Romero J, Ilabaca C, Ruiz M, Jara C. Oenococcus oeni in Chilean Red Wines: Technological and Genomic Characterization. Front Microbiol 2018; 9:90. [PMID: 29491847 PMCID: PMC5817079 DOI: 10.3389/fmicb.2018.00090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
The presence and load of species of LAB at the end of the malolactic fermentation (MLF) were investigated in 16 wineries from the different Chilean valleys (Limarí, Casablanca, Maipo, Rapel, and Maule Valleys) during 2012 and 2013, using PCR-RFLP and qPCR. Oenococcus oeni was observed in 80% of the samples collected. Dominance of O. oeni was reflected in the bacterial load (O. oeni/total bacteria) measured by qPCR, corresponding to >85% in most of the samples. A total of 178 LAB isolates were identified after sequencing molecular markers, 95 of them corresponded to O. oeni. Further genetic analyses were performed using MLST (7 genes) including 10 commercial strains; the results indicated that commercial strains were grouped together, while autochthonous strains distributed among different genetic clusters. To pre-select some autochthonous O. oeni, these isolates were also characterized based on technological tests such as ethanol tolerance (12 and 15%), SO2 resistance (0 and 80 mg l−1), and pH (3.1 and 3.6) and malic acid transformation (1.5 and 4 g l−1). For comparison purposes, commercial strain VP41 was also tested. Based on their technological performance, only 3 isolates were selected for further examination (genome analysis) and they were able to reduce malic acid concentration, to grow at low pH 3.1, 15% ethanol and 80 mg l−1 SO2. The genome analyses of three selected isolates were examined and compared to PSU-1 and VP41 strains to study their potential contribution to the organoleptic properties of the final product. The presence and homology of genes potentially related to aromatic profile were compared among those strains. The results indicated high conservation of malolactic enzyme (>99%) and the absence of some genes related to odor such as phenolic acid decarboxylase, in autochthonous strains. Genomic analysis also revealed that these strains shared 470 genes with VP41 and PSU-1 and that autochthonous strains harbor an interesting number of unique genes (>21). Altogether these results reveal the presence of local strains distinguishable from commercial strains at the genetic/genomic level and also having genomic traits that enforce their potential use as starter cultures.
Collapse
Affiliation(s)
- Jaime Romero
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Carolina Ilabaca
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | | | - Carla Jara
- Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Brizuela NS, Bravo-Ferrada BM, Pozo-Bayón MÁ, Semorile L, Elizabeth Tymczyszyn E. Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains. Food Res Int 2017; 106:22-28. [PMID: 29579921 DOI: 10.1016/j.foodres.2017.12.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
The ability of Patagonian L. plantarum and O. oeni strains to change the volatile profile of a sterile Pinot noir wine was studied through fermentation assays, at laboratory scale. Two strains of each LAB species were selected based on data regarding to their ability to survive in wine and to consume l-malic acid. Both O. oeni strains but only one L. plantarum (UNQLp 11) strain were able to remain viable, consuming l-malic acid through the fermentation assay with a concomitant increase of l-lactic acid. The volatile profile of Pinot noir wine, before and after LAB inoculation, was measured by using HS-SPME gas chromatography technique. This analysis showed that alcohols were the main volatile compounds after alcoholic fermentation and that after fermentation with the selected LAB strains, a decrease in the volatile alcohols concentration and an increase in the volatile esters concentration could be observed. The O. oeni UNQOe 73.2 strain produced the most notable change in the volatile profile, with the production of some important odorant esters at higher concentration, compared to O. oeni UNQOe 31b strain. Although, L. plantarum UNQLp 11 strain showed a better performance in the consumption of l-malic acid, this strain had a low capacity to modify the volatile compounds profile after incubation in red wine. The results found in the present work showed that different strains selected as potential malolactic starters could have different behavior when are incubated in real wine. Although L. plantarum UNQLp 11 strain showed a good consumption of l-malic acid, the O. oeni UNQOe 73.2 strain exhibited superior capacity to improve the flavor of wine due to its esterase activity that produce an increase of fruity and creamy odorants.
Collapse
Affiliation(s)
- Natalia S Brizuela
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
| | - Bárbara M Bravo-Ferrada
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - María Ángeles Pozo-Bayón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain
| | - Liliana Semorile
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - E Elizabeth Tymczyszyn
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
9
|
Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3040064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Brizuela NS, Bravo-Ferrada BM, La Hens DV, Hollmann A, Delfederico L, Caballero A, Tymczyszyn EE, Semorile L. Comparative vinification assays with selected Patagonian strains of Oenococcus oeni and Lactobacillus plantarum. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Lactic acid bacteria communities in must, alcoholic and malolactic Tempranillo wine fermentations, by culture-dependent and culture-independent methods. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2720-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Vigentini I, Praz A, Domeneghetti D, Zenato S, Picozzi C, Barmaz A, Foschino R. Characterization of malolactic bacteria isolated from Aosta Valley wines and evidence of psychrotrophy in some strains. J Appl Microbiol 2016; 120:934-45. [PMID: 26820246 DOI: 10.1111/jam.13080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/23/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022]
Affiliation(s)
- I. Vigentini
- Department of Food, Environmental and Nutrition Sciences; Università degli studi di Milano; Milan Italy
| | - A. Praz
- Department of Food, Environmental and Nutrition Sciences; Università degli studi di Milano; Milan Italy
| | | | - S. Zenato
- Institut Agricole Régional of Aosta; Aosta Italy
| | - C. Picozzi
- Department of Food, Environmental and Nutrition Sciences; Università degli studi di Milano; Milan Italy
| | - A. Barmaz
- Institut Agricole Régional of Aosta; Aosta Italy
| | - R. Foschino
- Department of Food, Environmental and Nutrition Sciences; Università degli studi di Milano; Milan Italy
| |
Collapse
|
13
|
Growth and consumption of l-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains. Folia Microbiol (Praha) 2016; 61:365-73. [DOI: 10.1007/s12223-016-0446-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/12/2016] [Indexed: 11/27/2022]
|
14
|
Cafaro C, Bonomo MG, Guerrieri A, Crispo F, Ciriello R, Salzano G. Assessment of the genetic polymorphism and physiological characterization of indigenous Oenococcus oeni strains isolated from Aglianico del Vulture red wine. Folia Microbiol (Praha) 2015; 61:1-10. [DOI: 10.1007/s12223-015-0402-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
15
|
Cafaro C, Bonomo MG, Rossano R, Larocca M, Salzano G. Efficient recovery of whole cell proteins in Oenococcus oeni—a comparison of different extraction protocols for high-throughput malolactic starter applications. Folia Microbiol (Praha) 2014; 59:399-408. [DOI: 10.1007/s12223-014-0312-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
16
|
Zapparoli G, Fracchetti F, Stefanelli E, Torriani S. Genetic and phenotypic strain heterogeneity within a natural population of Oenococcus oeni from Amarone wine. J Appl Microbiol 2012; 113:1087-96. [PMID: 22897221 DOI: 10.1111/j.1365-2672.2012.05425.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/11/2012] [Accepted: 07/21/2012] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the Oenococcus oeni population occurring during spontaneous malolactic fermentation (MLF) of Amarone wine, a peculiar and hostile environment for malolactic bacteria. METHODS AND RESULTS Pulsed-field gel electrophoresis (PFGE) analysis showed a high level of genetic heterogeneity within the O. oeni population involved in MLF throughout an industrial vinification of Amarone wine. The 13 strains with distinct PFGE profile displayed different capability to hydrolyse esters and glycosides, as well as great variability to growth under stress parameters, such as high ethanol content (15% v/v), low pH (3·0) and temperature (15°C), and presence of SO(2). Moreover, polymorphism in the gene sacB involved in exopolysaccharide production was observed among the strains. The strains showed differences to convert l-malic acid into l-lactic acid in wine. CONCLUSIONS The occurrence of spontaneous MLF in stressful ecosystems such as Amarone wine is related to the heterogeneity of O. oeni community; biodiversity indexes and strain evolution analyses suggested that its success depends on its initial strain evenness. SIGNIFICANCE AND IMPACT OF THE STUDY Remarkable intraspecies complexity within the O. oeni natural population could explain the great versatility of this species as key of successful adaptation to harsh winemaking conditions.
Collapse
Affiliation(s)
- G Zapparoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | | | | | | |
Collapse
|
17
|
Tan DX, Hardeland R, Manchester LC, Rosales-Corral S, Coto-Montes A, Boga JA, Reiter RJ. Emergence of naturally occurring melatonin isomers and their proposed nomenclature. J Pineal Res 2012; 53:113-21. [PMID: 22332602 DOI: 10.1111/j.1600-079x.2012.00979.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin was considered to be the sole member of this natural family. The emergence of naturally occurring melatonin isomers (MIs) has opened an exciting new research area. Currently, several MIs have been identified in wine, and these molecules are believed to be synthesized by either yeasts or bacteria. A tentative nomenclature for the MIs is proposed in this article. It will be important to explore whether all organisms have the capacity to synthesize MIs, especially under the conditions of environmental stress. These isomers probably share many of the biological functions of melatonin, but their activities seem to exceed those of melatonin. On basis of the limited available information, it seems that MIs differ in their biosynthetic pathways from melatonin. Especially in those compounds in which the aliphatic side chain is not attached to ring atom 3, the starting material may not be tryptophan. Also, the metabolic pathways of MIs remain unknown. This, therefore, is another promising area of research to explore. It is our hypothesis that MIs would increase the performance of yeasts and probiotic bacteria during the processes of fermentation. Therefore, yeasts producing elevated levels of these isomers might have a superior alcohol tolerance and be able to produce higher levels of alcohol. This can be tested by comparing existing yeast strains differing in alcohol tolerance. Selection for MIs may become a strategy for isolating more resistant yeast and Lactobacillus strains, which can be of interest for industrial alcohol production and quality improvements in bacterially fermented foods such as kimchi.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|