1
|
Diversity and Dynamics of Seaweed Associated Microbial Communities Inhabiting the Lagoon of Venice. Microorganisms 2020; 8:microorganisms8111657. [PMID: 33114532 PMCID: PMC7693704 DOI: 10.3390/microorganisms8111657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023] Open
Abstract
Seaweeds are a group of essential photosynthetic organisms that harbor a rich diversity of associated microbial communities with substantial functions related to host health and defense. Environmental and anthropogenic stressors may disrupt the microbial communities and their metabolic activity, leading to host physiological alterations that negatively affect seaweeds’ performance and survival. Here, the bacterial communities associated with one of the most common seaweed, Ulva laetevirens Areshough, were sampled over a year at three sites of the lagoon of Venice affected by different environmental and anthropogenic stressors. Bacterial communities were characterized through Illumina sequencing of the V4 hypervariable region of 16S rRNA genes. The study demonstrated that the seaweed associated bacterial communities at sites impacted by environmental stressors were host-specific and differed significantly from the less affected site. Furthermore, these communities were significantly distinct from those of the surrounding seawater. The bacterial communities’ composition was significantly correlated with environmental parameters (nutrient concentrations, dissolved oxygen saturation, and pH) across sites. This study showed that several more abundant bacteria on U. laetevirens at stressed sites belonged to taxa related to the host response to the stressors. Overall, environmental parameters and anthropogenic stressors were shown to substantially affect seaweed associated bacterial communities, which reflect the host response to environmental variations.
Collapse
|
2
|
Sampaio CJS, Souza JRBD, Carvalho GCD, Quintella CM, Roque MRDA. Analysis of petroleum biodegradation by a bacterial consortium isolated from worms of the polychaeta class (Annelida): Implications for NPK fertilizer supplementation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:617-624. [PMID: 31207500 DOI: 10.1016/j.jenvman.2019.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Degradation of petroleum hydrocarbons using bacterial consortia may be a means of optimizing bioremediation techniques. In this study, bacterial strains were isolated from the digestive tract of polychaete worms and evaluated concerning the potential of the bacteria to degrade petroleum compounds (Acinetobacter sp., Bacillus sp., Pantoea sp. and Enterobacter sp.). The strains were separately screened regarding their potential to degrade oil after 24 h. The main experiment was carried out for 30 days with the addition of nitrogen, phosphorus and potassium (NPK) after 15 days (Bact-NPK15) and 28 days (Bact-NPK28) and without NPK (Bact). The Bact treatment biomass remained stable until the 20th day of the experiment. C13-C40 n-alkanes were degraded with all treatments in the following order: Bact>Bact-NPK28>Bact-NPK15. Significant differences were observed between the controls and all treatments (p = 0.00031). Measurement of polycyclic aromatic hydrocarbons (PAHs) indicates a lower contribution of these compounds in the Bact-NPK28 treatment, although no significant difference between groups was observed. Bact-NPK28 was able to remove 40% of naphthalene, while Bact-NPK15 removed 20%; this effect was not observed in Bact. Higher hopane degradation levels were observed in Bact and, to a lesser extent, in Bact-NPK28. NPK application for 28 days mainly favored PAH degradation. The evaluated consortium thus exhibits potential in the bioremediation of petroleum-contaminated areas.
Collapse
Affiliation(s)
- Carla Jaqueline Silva Sampaio
- Laboratório de Microbiologia Aplicada e Bioprospecção, Instituto de Ciências da Saúde, Departamento de Biointeração, Universidade Federal da Bahia (UFBA), Campus Canela, 40110-100, Salvador, Bahia, Brazil; Centro Interdisciplinar Em Energia e Ambiente, Universidade Federal da Bahia (UFBA), Campus Federação/Ondina, 40170-115, Salvador, Bahia, Brazil
| | - José Roberto Bispo de Souza
- Laboratório de Física Nuclear Aplicada, Instituto de Física, Departamento de Física da Terra e Do Meio Ambiente, Universidade Federal da Bahia (UFBA), Campus Ondina, 40170-140, Salvador, Bahia, Brazil
| | - Gilson Correia de Carvalho
- Laboratório de Modelagem de Dados Biológicos, Instituto de Ciências da Saúde, Departamento de Biointeração, Universidade Federal da Bahia (UFBA), Campus Canela, 40110-100, Salvador, Bahia, Brazil
| | - Cristina Maria Quintella
- Laboratório de Cinética e Dinâmica Molecular, Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade Federal da Bahia (UFBA), Campus Ondina, 40170-290, Salvador, Bahia, Brazil
| | - Milton Ricardo de Abreu Roque
- Laboratório de Microbiologia Aplicada e Bioprospecção, Instituto de Ciências da Saúde, Departamento de Biointeração, Universidade Federal da Bahia (UFBA), Campus Canela, 40110-100, Salvador, Bahia, Brazil; Centro Interdisciplinar Em Energia e Ambiente, Universidade Federal da Bahia (UFBA), Campus Federação/Ondina, 40170-115, Salvador, Bahia, Brazil.
| |
Collapse
|
3
|
Dror H, Novak L, Evans JS, López-Legentil S, Shenkar N. Core and Dynamic Microbial Communities of Two Invasive Ascidians: Can Host-Symbiont Dynamics Plasticity Affect Invasion Capacity? MICROBIAL ECOLOGY 2019; 78:170-184. [PMID: 30411189 DOI: 10.1007/s00248-018-1276-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Ascidians (Chordata, Ascidiacea) are considered to be prominent marine invaders, able to tolerate highly polluted environments and fluctuations in salinity and temperature. Here, we examined the seasonal and spatial dynamics of the microbial communities in the inner-tunic of two invasive ascidians, Styela plicata (Lesueur 1823) and Herdmania momus (Savigny 1816), in order to investigate the changes that occur in the microbiome of non-indigenous ascidians in different environments. Microbial communities were characterized using next-generation sequencing of partial (V4) 16S rRNA gene sequences. A clear differentiation between the ascidian-associated microbiome and bacterioplankton was observed, and two distinct sets of operational taxonomic units (OTUs), one core and the other dynamic, were recovered from both species. The relative abundance of the dynamic OTUs in H. momus was higher than in S. plicata, for which core OTU structure was maintained independently of location. Ten and seventeen core OTUs were identified in S. plicata and H. momus, respectively, including taxa with reported capabilities of carbon fixing, ammonia oxidization, denitrification, and heavy-metal processing. The ascidian-sourced dynamic OTUs clustered in response to site and season but significantly differed from the bacterioplankton community structure. These findings suggest that the associations between invasive ascidians and their symbionts may enhance host functionality while maintaining host adaptability to changing environmental conditions.
Collapse
Affiliation(s)
- Hila Dror
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lion Novak
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - James S Evans
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - Susanna López-Legentil
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
4
|
Multipartner Symbiosis across Biological Domains: Looking at the Eukaryotic Associations from a Microbial Perspective. mSystems 2019; 4:4/4/e00148-19. [PMID: 31239394 PMCID: PMC6593219 DOI: 10.1128/msystems.00148-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sponges establish tight associations with both micro- and macroorganisms. However, while studies on sponge microbiomes are numerous, nothing is currently known about the microbiomes of sponge-associated polychaetes and their relationships with those of their host sponges. We analyzed the bacterial communities of symbiotic polychaetes (Haplosyllis spp.) and their host sponges (Clathria reinwardti, Amphimedon paraviridis, Neofibularia hartmani, and Aaptos suberitoides) to assess the influence of the sponges on the polychaete microbiomes. We identified both eukaryote partners by molecular (16S and COI genes) and morphological features, and we identified their microbial communities by high-throughput sequencing of the 16S rRNA gene (V4 region). We unravel the existence of six Haplosyllis species (five likely undescribed) associated at very high densities with the study sponge species in Nha Trang Bay (central Vietnam). A single polychaete species inhabited A. paraviridis and was different from the single species that inhabited A. suberitoides Conversely, two different polychaete species were found in C. reinwardti and N. hartmani, depending on the two host locations. Regardless of the host sponge, polychaete microbiomes were species specific, which is a widespread feature in marine invertebrates. More than half of the polychaete bacteria were also found in the host sponge microbiome but at contrasting abundances. Thus, the associated polychaetes seemed to be able to select, incorporate, and enrich part of the sponge microbiome, a selection that appears to be polychaete species specific. Moreover, the bacterial diversity is similar in both eukaryotic partners, which additionally confirms the influence of food (host sponge) on the structure of the polychaete microbiome.IMPORTANCE The symbiotic lifestyle represents a fundamental cryptic contribution to the diversity of marine ecosystems. Sponges are ideal targets to improve understanding the symbiotic relationships from evolutionary and ecological points of view, because they are the most ancient metazoans on earth, are ubiquitous in the marine benthos, and establish complex symbiosis with both prokaryotes and animals, which in turn also harbor their own bacterial communities. Here, we study the microbiomes of sponge-polychaete associations and confirm that polychaetes feed on their host sponges. The study worms select and enrich part of the sponge microbiome to shape their own species-specific bacterial communities. Moreover, worm microbiome diversity runs parallel to that of its food host sponge. Considering our results on symbiotic polychaetes and previous studies on fishes and mammals, diet appears to be an important source of bacteria for animals to shape their species-specific microbiomes.
Collapse
|
5
|
Hochstein R, Zhang Q, Sadowsky MJ, Forbes VE. The deposit feeder Capitella teleta has a unique and relatively complex microbiome likely supporting its ability to degrade pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:547-554. [PMID: 30909032 DOI: 10.1016/j.scitotenv.2019.03.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Capitella teleta is a sediment-dwelling marine polychaete that is often found in high densities in association with organic matter and pollutants. While C. teleta has been reported to transform a variety of aromatic hydrocarbons, the mechanisms by which degradation occurs are unknown. Moreover, there is continuing debate on the role of host and microbiota in degradation activity. The aims of this study were to characterize the gut microbiome of C. teleta and to identify microbiota that could potentially play a role in degradation of organic matter and aromatic hydrocarbons. Sequencing analysis of the 16S rRNA genes from the intestinal tracts of adult worms revealed a unique microbiome that was distinct from that of the worm's sediment food source and fecal pellets. About 66% of the 775 identified OTUs from the C. teleta gut microbiome were found to be unique to the worm and displayed high inter-individual variability. The gut microbiome was dominated by members of the genera Arcobacter, Pseudoalteromonas, Methylobacterium, and Propionibacterium. Functional analyses of microbiota revealed that hydrocarbon treatment led to a proliferation of gene classes involved in chemoheterotrophy and aromatic compound degradation. Of the 18 most abundant taxa identified, 50% were members of genera containing hydrocarbon (PAH)-degrading members, including Acinetobacter, Thalassotalea, and Achromobacter. Data obtained in this study will be useful to understand the biology of this marine polychaete and to elucidate the role that gut bacteria play in worm catabolism and the transformation of sediment organic pollutants.
Collapse
Affiliation(s)
- Rebecca Hochstein
- Department of Ecology, Evolution, and Behavior, University of Minnesota, United States of America; BioTechnology Institute, University of Minnesota, United States of America
| | - Qian Zhang
- BioTechnology Institute, University of Minnesota, United States of America
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, United States of America; Department of Soil, Water and Climate, University of Minnesota, United States of America; Department of Plant and Microbial Biology, University of Minnesota, United States of America.
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, United States of America.
| |
Collapse
|
6
|
Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
He X, Chaganti SR, Heath DD. Population-Specific Responses to Interspecific Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations. MICROBIAL ECOLOGY 2018; 75:140-151. [PMID: 28714057 DOI: 10.1007/s00248-017-1035-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/04/2017] [Indexed: 05/27/2023]
Abstract
The gut microbial community in vertebrates plays a role in nutrient digestion and absorption, development of intestine and immune systems, resistance to infection, regulation of bone mass and even host behavior and can thus impact host fitness. Atlantic salmon (Salmo salar) reintroduction efforts into Lake Ontario, Canada, have been unsuccessful, likely due to competition with non-native salmonids. In this study, we explored interspecific competition effects on the gut microbiota of two Atlantic salmon populations (LaHave and Sebago) resulting from four non-native salmonids. After 10 months of rearing in semi-natural stream tanks under six interspecific competition treatments, we characterized the gut microbiota of 178 Atlantic salmon by parallel sequencing the 16S rRNA gene. We found 3978 bacterial OTUs across all samples. Microbiota alpha diversity and abundance of 27 OTUs significantly differed between the two populations. Interspecific competition reduced relative abundance of potential beneficial bacteria (six genera of lactic acid bacteria) as well as 13 OTUs, but only in the LaHave population, indicating population-specific competition effects. The pattern of gut microbiota response to interspecific competition may reflect local adaptation of the host-microbiota interactions and can be used to select candidate populations for improved species reintroduction success.
Collapse
Affiliation(s)
- Xiaoping He
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
8
|
Aires T, Serrão EA, Engelen AH. Host and Environmental Specificity in Bacterial Communities Associated to Two Highly Invasive Marine Species (Genus Asparagopsis). Front Microbiol 2016; 7:559. [PMID: 27148239 PMCID: PMC4839258 DOI: 10.3389/fmicb.2016.00559] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/04/2016] [Indexed: 11/29/2022] Open
Abstract
As habitats change due to global and local pressures, population resilience, and adaptive processes depend not only on their gene pools but also on their associated bacteria communities. The hologenome can play a determinant role in adaptive evolution of higher organisms that rely on their bacterial associates for vital processes. In this study, we focus on the associated bacteria of the two most invasive seaweeds in southwest Iberia (coastal mainland) and nearby offshore Atlantic islands, Asparagopsis taxiformis and Asparagopsis armata. Bacterial communities were characterized using 16S rRNA barcoding through 454 next generation sequencing and exploratory shotgun metagenomics to provide functional insights and a backbone for future functional studies. The bacterial community composition was clearly different between the two species A. taxiformis and A. armata and between continental and island habitats. The latter was mainly due to higher abundances of Acidimicrobiales, Sphingomonadales, Xanthomonadales, Myxococcales, and Alteromonadales on the continent. Metabolic assignments for these groups contained a higher number of reads in functions related to oxidative stress and resistance to toxic compounds, more precisely heavy metals. These results are in agreement with their usual association with hydrocarbon degradation and heavy-metals detoxification. In contrast, A. taxiformis from islands contained more bacteria related to oligotrophic environments which might putatively play a role in mineralization of dissolved organic matter. The higher number of functional assignments found in the metagenomes of A. taxiformis collected from Cape Verde Islands suggest a higher contribution of bacteria to compensate nutrient limitation in oligotrophic environments. Our results show that Asparagopsis-associated bacterial communities have host-specificity and are modulated by environmental conditions. Whether this environmental effect reflects the host's selective requirements or the locally available bacteria remains to be addressed. However, the known functional capacities of these bacterial communities indicate their potential for eco-physiological functions that could be valuable for the host fitness.
Collapse
Affiliation(s)
- Tânia Aires
- Centro de Ciências do Mar-CIMAR, Universidade do Algarve Faro, Portugal
| | - Ester A Serrão
- Centro de Ciências do Mar-CIMAR, Universidade do Algarve Faro, Portugal
| | - Aschwin H Engelen
- Centro de Ciências do Mar-CIMAR, Universidade do Algarve Faro, Portugal
| |
Collapse
|
9
|
Symbiotic bacteria of helminths: what role may they play in ecosystems under anthropogenic stress? J Helminthol 2016; 90:647-657. [PMID: 26754963 DOI: 10.1017/s0022149x15001066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Symbiotic bacteria are a common feature of many animals, particularly invertebrates, from both aquatic and terrestrial habitats. These bacteria have increasingly been recognized as performing an important role in maintaining invertebrate health. Both ecto- and endoparasitic helminths have also been found to harbour a range of bacterial species which provide a similar function. The part symbiotic bacteria play in sustaining homeostasis of free-living invertebrates exposed to anthropogenic pressure (climate change, pollution), and the consequences to invertebrate populations when their symbionts succumb to poor environmental conditions, are increasingly important areas of research. Helminths are also susceptible to environmental stress and their symbiotic bacteria may be a key aspect of their responses to deteriorating conditions. This article summarizes the ecophysiological relationship helminths have with symbiotic bacteria and the role they play in maintaining a healthy parasite and the relevance of specific changes that occur in free-living invertebrate-bacteria interactions under anthropogenic pressure to helminths and their bacterial communities. It also discusses the importance of understanding the mechanistic sensitivity of helminth-bacteria relationships to environmental stress for comprehending the responses of parasites to challenging conditions.
Collapse
|
10
|
DeWoody JA, Abts KC, Fahey AL, Ji Y, Kimble SJA, Marra NJ, Wijayawardena BK, Willoughby JR. Of contigs and quagmires: next‐generation sequencing pitfalls associated with transcriptomic studies. Mol Ecol Resour 2013; 13:551-8. [PMID: 23615313 DOI: 10.1111/1755-0998.12107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/15/2022]
Affiliation(s)
- J. Andrew DeWoody
- Department of Biological Sciences Purdue University West Lafayette IN 47907 USA
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Kendra C. Abts
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Anna L. Fahey
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Yanzhu Ji
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Steven J. A. Kimble
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | - Nicholas J. Marra
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| | | | - Janna R. Willoughby
- Department of Forestry & Natural Resources Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
11
|
Stratil SB, Neulinger SC, Knecht H, Friedrichs AK, Wahl M. Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus. Microbiologyopen 2013; 2:338-49. [PMID: 23568841 PMCID: PMC3633357 DOI: 10.1002/mbo3.79] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/26/2013] [Accepted: 02/06/2013] [Indexed: 02/01/2023] Open
Abstract
The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture-based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15 °C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga.
Collapse
Affiliation(s)
| | - Sven C Neulinger
- Institute for General Microbiology, Christian-Albrecht-University KielKiel, Germany
| | - Henrik Knecht
- ICMB Institute of Clinical Molecular Biology KielKiel, Germany
| | - Anette K Friedrichs
- ICMB Institute of Clinical Molecular Biology KielKiel, Germany
- Department of Internal Medicine, University Hospital Schleswig-HolsteinCampus Kiel, Kiel, Germany
| | - Martin Wahl
- GEOMAR Helmholtz Centre for Ocean Research KielKiel, Germany
| |
Collapse
|
12
|
|
13
|
Di Camillo CG, Luna GM, Bo M, Giordano G, Corinaldesi C, Bavestrello G. Biodiversity of prokaryotic communities associated with the ectoderm of Ectopleura crocea (Cnidaria, Hydrozoa). PLoS One 2012; 7:e39926. [PMID: 22768172 PMCID: PMC3386928 DOI: 10.1371/journal.pone.0039926] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/29/2012] [Indexed: 02/02/2023] Open
Abstract
The surface of many marine organisms is colonized by complex communities of microbes, yet our understanding of the diversity and role of host-associated microbes is still limited. We investigated the association between Ectopleura crocea (a colonial hydroid distributed worldwide in temperate waters) and prokaryotic assemblages colonizing the hydranth surface. We used, for the first time on a marine hydroid, a combination of electron and epifluorescence microscopy and 16S rDNA tag pyrosequencing to investigate the associated prokaryotic diversity. Dense assemblages of prokaryotes were associated with the hydrant surface. Two microbial morphotypes were observed: one horseshoe-shaped and one fusiform, worm-like. These prokaryotes were observed on the hydrozoan epidermis, but not in the portions covered by the perisarcal exoskeleton, and their abundance was higher in March while decreased in late spring. Molecular analyses showed that assemblages were dominated by Bacteria rather than Archaea. Bacterial assemblages were highly diversified, with up to 113 genera and 570 Operational Taxonomic Units (OTUs), many of which were rare and contributed to <0.4%. The two most abundant OTUs, likely corresponding to the two morphotypes present on the epidermis, were distantly related to Comamonadaceae (genus Delftia) and to Flavobacteriaceae (genus Polaribacter). Epibiontic bacteria were found on E. crocea from different geographic areas but not in other hydroid species in the same areas, suggesting that the host-microbe association is species-specific. This is the first detailed report of bacteria living on the hydrozoan epidermis, and indeed the first study reporting bacteria associated with the epithelium of E. crocea. Our results provide a starting point for future studies aiming at clarifying the role of this peculiar hydrozoan-bacterial association.
Collapse
|