1
|
Lavefve L, Cureau N, Rodhouse L, Marasini D, Walker LM, Ashley D, Lee S, Gadonna‐Widehem P, Anton PM, Carbonero F. Microbiota profiles and dynamics in fermented plant‐based products and preliminary assessment of their in vitro gut microbiota modulation. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Laura Lavefve
- Department of Food Science University of Arkansas Fayetteville AR USA
| | - Natacha Cureau
- Department of Food Science University of Arkansas Fayetteville AR USA
| | - Lindsey Rodhouse
- Department of Food Science University of Arkansas Fayetteville AR USA
| | - Daya Marasini
- Department of Food Science University of Arkansas Fayetteville AR USA
| | - Laura M. Walker
- Department of Biology Washington University in Saint‐Louis St Louis MO USA
| | - Danielle Ashley
- Department of Food Science University of Arkansas Fayetteville AR USA
| | - Sun‐Ok Lee
- Department of Food Science University of Arkansas Fayetteville AR USA
| | - Pascale Gadonna‐Widehem
- Transformations & Agroresources, ULR7519 Institut Polytechnique UniLaSalle, Universite d’Artois Beauvais France
| | - Pauline M. Anton
- Transformations & Agroresources, ULR7519 Institut Polytechnique UniLaSalle, Universite d’Artois Beauvais France
| | - Franck Carbonero
- Department of Food Science University of Arkansas Fayetteville AR USA
- Department of Nutrition and Exercise Physiology Elson Floyd School of Medicine Washington State University‐Spokane Spokane WA USA
| |
Collapse
|
2
|
Blake LI, Sherry A, Mejeha OK, Leary P, Coombs H, Stone W, Head IM, Gray ND. An Unexpectedly Broad Thermal and Salinity-Tolerant Estuarine Methanogen Community. Microorganisms 2020; 8:microorganisms8101467. [PMID: 32987846 PMCID: PMC7600826 DOI: 10.3390/microorganisms8101467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Moderately thermophilic (Tmax, ~55 °C) methanogens are identified after extended enrichments from temperate, tropical and low-temperature environments. However, thermophilic methanogens with higher growth temperatures (Topt ≥ 60 °C) are only reported from high-temperature environments. A microcosm-based approach was used to measure the rate of methane production and methanogen community structure over a range of temperatures and salinities in sediment from a temperate estuary. We report short-term incubations (<48 h) revealing methanogens with optimal activity reaching 70 °C in a temperate estuary sediment (in situ temperature 4–5 °C). While 30 °C enrichments amended with acetate, H2 or methanol selected for corresponding mesophilic trophic groups, at 60 °C, only hydrogenotrophs (genus Methanothermobacter) were observed. Since these methanogens are not known to be active under in situ temperatures, we conclude constant dispersal from high temperature habitats. The likely provenance of the thermophilic methanogens was studied by enrichments covering a range of temperatures and salinities. These enrichments indicated that the estuarine sediment hosted methanogens encompassing the global activity envelope of most cultured species. We suggest that estuaries are fascinating sink and source environments for microbial function study.
Collapse
Affiliation(s)
- Lynsay I. Blake
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Department of Biosciences, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK
- Correspondence: (L.I.B.); (N.D.G.)
| | - Angela Sherry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Obioma K. Mejeha
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Department of Microbiology, Federal University of Technology, Owerri P.M.B. 1526, Nigeria
| | - Peter Leary
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Henry Coombs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Wendy Stone
- Water Institute and Department of Microbiology, University of Stellenbosch, Stellenbosch 7602, South Africa;
| | - Ian M. Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Neil D. Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Correspondence: (L.I.B.); (N.D.G.)
| |
Collapse
|
3
|
Webster G, O'Sullivan LA, Meng Y, Williams AS, Sass AM, Watkins AJ, Parkes RJ, Weightman AJ. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol Ecol 2014; 91:1-18. [PMID: 25764553 PMCID: PMC4399439 DOI: 10.1093/femsec/fiu025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2-8 × 10(7) 16S rRNA gene copies cm(-3)) than the high-salinity marine sites from BR and AR (2 × 10(4)-2 × 10(7) and 4 × 10(6)-2 × 10(7) 16S rRNA gene copies cm(-3), respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the 'Bathyarchaeota' (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only 'marine' group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments.
Collapse
Affiliation(s)
- Gordon Webster
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Louise A O'Sullivan
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Yiyu Meng
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Angharad S Williams
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Andrea M Sass
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Andrew J Watkins
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - R John Parkes
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - Andrew J Weightman
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff, Wales, CF10 3AT, UK
| |
Collapse
|
4
|
Carbonero F, Oakley BB, Purdy KJ. Metabolic flexibility as a major predictor of spatial distribution in microbial communities. PLoS One 2014; 9:e85105. [PMID: 24465487 PMCID: PMC3897421 DOI: 10.1371/journal.pone.0085105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology.
Collapse
Affiliation(s)
- Franck Carbonero
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Brian B. Oakley
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- United States Department of Agriculture, Agricultural Research Service, Richard B. Russell Research Center, Athens, Georgia, United States of America
| | - Kevin J. Purdy
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|