1
|
Negi R, Sharma B, Kumar S, Chaubey KK, Kaur T, Devi R, Yadav A, Kour D, Yadav AN. Plant endophytes: unveiling hidden applications toward agro-environment sustainability. Folia Microbiol (Praha) 2024; 69:181-206. [PMID: 37747637 DOI: 10.1007/s12223-023-01092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.
Collapse
Affiliation(s)
- Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Rubee Devi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ashok Yadav
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
2
|
Cuellar-Gaviria TZ, García-Botero C, Ju KS, Villegas-Escobar V. The genome of Bacillus tequilensis EA-CB0015 sheds light into its epiphytic lifestyle and potential as a biocontrol agent. Front Microbiol 2023; 14:1135487. [PMID: 37051516 PMCID: PMC10083409 DOI: 10.3389/fmicb.2023.1135487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Different Bacillus species have successfully been used as biopesticides against a broad range of plant pathogens. Among these, Bacillus tequilensis EA-CB0015 has shown to efficiently control Black sigatoka disease in banana plants, presumably by mechanisms of adaptation that involve modifying the phyllosphere environment. Here, we report the complete genome of strain EA-CB0015, its precise taxonomic identity, and determined key genetic features that may contribute to its effective biocontrol of plant pathogens. We found that B. tequilensis EA-CB0015 harbors a singular 4 Mb circular chromosome, with 3,951 protein-coding sequences. Multi-locus sequence analysis (MLSA) and average nucleotide identity (ANI) analysis classified strain EA-CB0015 as B. tequilensis. Encoded within its genome are biosynthetic gene clusters (BGCs) for surfactin, iturin, plipastatin, bacillibactin, bacilysin, subtilosin A, sporulation killing factor, and other natural products that may facilitate inter-microbial warfare. Genes for indole-acetic acid (IAA) synthesis, the use of diverse carbon sources, and a multicellular lifestyle involving motility, biofilm formation, quorum sensing, competence, and sporulation suggest EA-CB0015 is adept at colonizing plant surfaces. Defensive mechanisms to survive invading viral infections and preserve genome integrity include putative type I and type II restriction modification (RM) and toxin/antitoxin (TA) systems. The presence of bacteriophage sequences, genomic islands, transposable elements, virulence factors, and antibiotic resistance genes indicate prior occurrences of genetic exchange. Altogether, the genome of EA-CB0015 supports its function as a biocontrol agent against phytopathogens and suggest it has adapted to thrive within phyllosphere environments.
Collapse
Affiliation(s)
- Tatiana Z. Cuellar-Gaviria
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Banana Research Center, Augura, Conjunto Residencial Los Almendros, Carepa, Colombia
| | - Camilo García-Botero
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Kou-San Ju, ; Valeska Villegas-Escobar,
| | - Valeska Villegas-Escobar
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
- *Correspondence: Kou-San Ju, ; Valeska Villegas-Escobar,
| |
Collapse
|
3
|
Pedraza-Herrera LA, Lopez- Carrascal CE, Uribe Vélez D. Mecanismos de acción de <i>Bacillus</i> spp. (Bacillaceae) contra microorganismos fitopatógenos durante su interacción con plantas. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.75045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Algunos Bacillus spp. promotores de crecimiento vegetal son microorganismos reconocidos como agentes de control biológico que forman una estructura de resistencia denominada endospora, que les permite sobrevivir en ambientes hostiles y estar en casi todos los agroecosistemas. Estos microorganismos han sido reportados como alternativa al uso de agroquímicos. Sus mecanismos de acción se pueden dividir en: producción de compuestos antimicrobianos, como son péptidos de síntesis no ribosomal (NRPs) y policétidos (PKs); producción de hormonas, capacidad de colonización, formación de biopelículas y competencia por espacio y nutrientes; síntesis de enzimas líticas como quitinasas, glucanasas, protesasas y acil homoserin lactonasas (AHSL); producción de compuestos orgánicos volátiles (VOCs); e inducción de resistencia sistémica (ISR). Estos mecanismos han sido reportados en la literatura en diversos estudios, principalmente llevados a cabo a nivel in vitro. Sin embargo, son pocos los estudios que contemplan la interacción dentro del sistema tritrófico: planta – microorganismos patógenos – Bacillus sp. (agente biocontrolador), a nivel in vivo. Es importante destacar que la actividad biocontroladora de los Bacillus es diferente cuando se estudia bajo condiciones de laboratorio, las cuales están sesgadas para lograr la máxima expresión de los mecanismos de acción. Por otra parte, a nivel in vivo, la interacción con la planta y el patógeno juegan un papel fundamental en la expresión de dichos mecanismos de acción, siendo esta más cercana a la situación real de campo. Esta revisión se centra en los mecanismos de acción de los Bacillus promotores de crecimiento vegetal, expresados bajo la interacción con la planta y el patógeno.
Collapse
|
4
|
Cruz-Martín M, Mena E, Acosta-Suárez M, Pichardo T, Rodriguez E, Alvarado-Capó Y. Protein compounds of Bacillus subtilis with in vitro antifungal activity against Pseudocercospora fijiensis (Morelet). Braz J Microbiol 2019; 51:265-269. [PMID: 31418142 DOI: 10.1007/s42770-019-00136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/07/2019] [Indexed: 12/01/2022] Open
Abstract
The metabolites of Bacillus subtilis CCIBP-M27 were evaluated as an antagonist of Pseudocercospora fijiensis. The culture filtrate did not inhibit ascospore germination but significantly reduced conidial germination and mycelial growth. Through microscopic analysis, deformations were observed as vacuolization and swelling in P. fijiensis mycelia when exposed to culture filtrate during 48 h. A similar response was induced by peptide-type compounds found on Bacillus subtilis CCIBP-M27 culture filtrate. The results obtained suggest that the in vitro antifungal effect of the strain CCIBP-M27 against P. fijiensis is related to the action of diffused metabolites such as proteins or peptide substances.
Collapse
Affiliation(s)
- Mileidy Cruz-Martín
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5., CP 54830, Santa Clara, Villa Clara, Cuba.
| | - Eilyn Mena
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5., CP 54830, Santa Clara, Villa Clara, Cuba
| | - Mayra Acosta-Suárez
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5., CP 54830, Santa Clara, Villa Clara, Cuba
| | - Tatiana Pichardo
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5., CP 54830, Santa Clara, Villa Clara, Cuba
| | - Eloisa Rodriguez
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5., CP 54830, Santa Clara, Villa Clara, Cuba
| | - Yelenys Alvarado-Capó
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5., CP 54830, Santa Clara, Villa Clara, Cuba
| |
Collapse
|
5
|
Mantil E, Crippin T, Avis TJ. Supported lipid bilayers using extracted microbial lipids: domain redistribution in the presence of fengycin. Colloids Surf B Biointerfaces 2019; 178:94-102. [DOI: 10.1016/j.colsurfb.2019.02.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
6
|
Macedo-Raygoza GM, Valdez-Salas B, Prado FM, Prieto KR, Yamaguchi LF, Kato MJ, Canto-Canché BB, Carrillo-Beltrán M, Di Mascio P, White JF, Beltrán-García MJ. Enterobacter cloacae, an Endophyte That Establishes a Nutrient-Transfer Symbiosis With Banana Plants and Protects Against the Black Sigatoka Pathogen. Front Microbiol 2019; 10:804. [PMID: 31133991 PMCID: PMC6513882 DOI: 10.3389/fmicb.2019.00804] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/28/2019] [Indexed: 01/20/2023] Open
Abstract
Banana (Musa spp.) is an important crop worldwide, but black Sigatoka disease caused by the fungus Pseudocercospora fijiensis threatens fruit production. In this work, we examined the potential of the endophytes of banana plants Enterobacter cloacae and Klebsiella pneumoniae, as antagonists of P. fijiensis and support plant growth in nutrient limited soils by N-transfer. The two bacterial isolates were identified by MALDI-TOF mass spectrometry and corroborated by 16S rRNA sequence analysis. Both bacteria were positive for beneficial traits such as N-fixation, indole acetic acid production, phosphate solubilization, negative for 1-aminocyclopropane 1-carboxylic acid deaminase and were antagonistic to P. fijiensis. To measure the effects on plant growth, the two plant bacteria and an E. coli strain (as non-endophyte), were inoculated weekly for 60 days as active cells (AC) and heat-killed cells (HKC) into plant microcosms without nutrients and compared to a water only treatment, and a mineral nutrients solution (MMN) treatment. Bacterial treatments increased growth parameters and prevented accelerated senescence, which was observed for water and mineral nutrients solution (MMN) treatments used as controls. Plants died after the first 20 days of being irrigated with water; irrigation with MMN enabled plants to develop some new leaves, but plants lost weight (−30%) during the same period. Plants treated with bacteria showed good growth, but E. cloacae AC treated plants had significantly greater biomass than the E. cloacae HKC. After 60 days, plants inoculated with E. cloacae AC showed intracellular bacteria within root cells, suggesting that a stable symbiosis was established. To evaluate the transference of organic N from bacteria into the plants, the 3 bacteria were grown with 15NH4Cl or Na15NO3 as the nitrogen source. The 15N transferred from bacteria to plant tissues was measured by pheophytin isotopomer abundance. The relative abundance of the isotopomers m/z 872.57, 873.57, 874.57, 875.57, 876.57 unequivocally demonstrated that plants acquired 15N atoms directly from bacterial cells, using them as a source of N, to support plant growth in restricted nutrient soils. E. cloacae might be a new alternative to promote growth and health of banana crops.
Collapse
Affiliation(s)
- Gloria M Macedo-Raygoza
- Engineering Institute, Universidad Autónoma de Baja California, Mexicali, Mexico.,Department of Chemistry, Universidad Autónoma de Guadalajara, Zapopan, Mexico
| | | | - Fernanda M Prado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Katia R Prieto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.,PPG Ciência Animal, Universidade de Franca, Franca, Brazil
| | - Lydia F Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Massuo J Kato
- Department of Fundamental Chemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Blondy B Canto-Canché
- Biotechnology Unit, Centro de Investigación Científica de Yucatán A.C., Mérida, Mexico
| | | | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - James F White
- Department of Plant Biology, School of Environmental and Biological Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | | |
Collapse
|
7
|
Poeydebat C, Carval D, Tixier P, Daribo MO, De Bellaire LDL. Ecological Regulation of Black Leaf Streak Disease Driven by Plant Richness in Banana Agroecosystems. PHYTOPATHOLOGY 2018; 108:1184-1195. [PMID: 29726762 DOI: 10.1094/phyto-12-17-0402-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Black leaf streak disease (BLSD), caused by the fungus Mycosphaerella fijiensis, is an important threat to banana production. Although its control relies on costly and unsustainable use of fungicides, ecological regulation of BLSD linked to field-scale plant diversity has received little attention. We monitored banana phytometers in plots in banana-based fields where no fungicides were applied. Within each plot, we measured plant richness in three strata, canopy openness, necrotic leaf removal, Musa abundance and richness. We quantified ecological regulation of five BLSD parameters (inoculum sources, spore abundance, lesion density, incubation time, and the area under the disease progression curve) and identified, using structural equation modeling, the characteristics of the plant community and the mechanisms likely responsible for the regulation. Regulation occurred, but most effectively before lesion formation, and was mainly related to plant richness between 1.5 and 5m high. A barrier effect, rather than a dilution effect, more likely limited spore abundance. Our results support the hypothesis that the potential effects of plant richness on leaf-scale microclimate variability and on the diversity of epiphyllic microorganisms are involved in the regulation of incubation time and lesion density. Field-scale management of plant diversity may be a promising lever to foster ecological regulation of BLSD.
Collapse
Affiliation(s)
- Charlotte Poeydebat
- First, second, and fourth authors: CIRAD, UPR GECO, F-97285 Le Lamentin, Martinique, France; first, second, third, and fifth authors: CIRAD, UPR GECO, F-34398 Montpellier, France; first, second, third, and fifth authors: GECO, University of Montpellier, CIRAD, Montpellier, France; and third author: Departamento de Agricultura y Agroforesteria, CATIE, Turrialba, Cartago, Costa Rica
| | - Dominique Carval
- First, second, and fourth authors: CIRAD, UPR GECO, F-97285 Le Lamentin, Martinique, France; first, second, third, and fifth authors: CIRAD, UPR GECO, F-34398 Montpellier, France; first, second, third, and fifth authors: GECO, University of Montpellier, CIRAD, Montpellier, France; and third author: Departamento de Agricultura y Agroforesteria, CATIE, Turrialba, Cartago, Costa Rica
| | - Philippe Tixier
- First, second, and fourth authors: CIRAD, UPR GECO, F-97285 Le Lamentin, Martinique, France; first, second, third, and fifth authors: CIRAD, UPR GECO, F-34398 Montpellier, France; first, second, third, and fifth authors: GECO, University of Montpellier, CIRAD, Montpellier, France; and third author: Departamento de Agricultura y Agroforesteria, CATIE, Turrialba, Cartago, Costa Rica
| | - Marie-Odette Daribo
- First, second, and fourth authors: CIRAD, UPR GECO, F-97285 Le Lamentin, Martinique, France; first, second, third, and fifth authors: CIRAD, UPR GECO, F-34398 Montpellier, France; first, second, third, and fifth authors: GECO, University of Montpellier, CIRAD, Montpellier, France; and third author: Departamento de Agricultura y Agroforesteria, CATIE, Turrialba, Cartago, Costa Rica
| | - Luc De Lapeyre De Bellaire
- First, second, and fourth authors: CIRAD, UPR GECO, F-97285 Le Lamentin, Martinique, France; first, second, third, and fifth authors: CIRAD, UPR GECO, F-34398 Montpellier, France; first, second, third, and fifth authors: GECO, University of Montpellier, CIRAD, Montpellier, France; and third author: Departamento de Agricultura y Agroforesteria, CATIE, Turrialba, Cartago, Costa Rica
| |
Collapse
|
8
|
Cruz-Martín M, Acosta-Suárez M, Mena E, Roque B, Pichardo T, Alvarado-Capó Y. Effect of Bacillus pumilus CCIBP-C5 on Musa- Pseudocercospora fijiensis interaction. 3 Biotech 2018; 8:122. [PMID: 29450112 DOI: 10.1007/s13205-018-1152-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 02/03/2018] [Indexed: 02/02/2023] Open
Abstract
The effect of antifungal activity of culture filtrate (CF) of Bacillus pumilus strain CCIBP-C5, an isolate from a phyllosphere of banana (Musa) leaves, was determined on Pseudocercospora fijiensis challenged banana plants. The CF was shown to decrease the fungal biomass and induce changes in banana plant. In this sense, at 70 days post inoculation (dpi), a lower infection index as well as a decrease in fungal biomass after 6 dpi was obtained in treated plants with respect to control ones. At the same time, changes in the activities of several enzymes related to plant defense responses, such as phenylalanine ammonia lyase, chitinases, β-1,3-glucanases and peroxidases were observed. These results indicate that B. pumilus CCIBP-C5 has a potential role for biological control of P. fijiensis possibly due to the production of antifungal metabolites.
Collapse
Affiliation(s)
- Mileidy Cruz-Martín
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Carretera a Camajuaní km 5.5, CP 54830 Santa Clara, Villa Clara Cuba
| | - Mayra Acosta-Suárez
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Carretera a Camajuaní km 5.5, CP 54830 Santa Clara, Villa Clara Cuba
| | - Eilyn Mena
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Carretera a Camajuaní km 5.5, CP 54830 Santa Clara, Villa Clara Cuba
| | - Berkis Roque
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Carretera a Camajuaní km 5.5, CP 54830 Santa Clara, Villa Clara Cuba
| | - Tatiana Pichardo
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Carretera a Camajuaní km 5.5, CP 54830 Santa Clara, Villa Clara Cuba
| | - Yelenys Alvarado-Capó
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Carretera a Camajuaní km 5.5, CP 54830 Santa Clara, Villa Clara Cuba
| |
Collapse
|
9
|
González-Jaramillo LM, Aranda FJ, Teruel JA, Villegas-Escobar V, Ortiz A. Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes. Colloids Surf B Biointerfaces 2017; 156:114-122. [DOI: 10.1016/j.colsurfb.2017.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
|
10
|
Posada LF, Alvarez JC, Hu CH, de-Bashan LE, Bashan Y. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. J Microbiol Methods 2016; 128:125-129. [PMID: 27263830 DOI: 10.1016/j.mimet.2016.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.
Collapse
Affiliation(s)
- Luisa F Posada
- Department of Process Engineering, Cra 49 #7 sur-50, Universidad EAFIT, Medellín, Colombia
| | - Javier C Alvarez
- Departament of Biological Sciences, Cra 49 #7 sur-50, Universidad EAFIT, Medellín, Colombia
| | - Chia-Hui Hu
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Luz E de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Ct., AL 36830, USA; Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Yoav Bashan
- The Bashan Institute of Science, 1730 Post Oak Ct., AL 36830, USA; Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| |
Collapse
|
11
|
Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet. World J Microbiol Biotechnol 2016; 32:44. [PMID: 26873555 DOI: 10.1007/s11274-015-1993-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
The tropical and mycoparasite strain Streptomyces galilaeus CFFSUR-B12 was evaluated as an antagonist of Mycosphaerella fijiensis Morelet, causal agent of the Black Sigatoka Disease (BSD) of banana. On zymograms of CFFSUR-B12 culture supernatants, we detected four chitinases of approximately 32 kDa (Chi32), 20 kDa (Chi20), and two with masses well over 170 kDa (ChiU) that showed little migration during denaturing electrophoresis at different concentrations of polyacrylamide. The thymol-sulphuric acid assay showed that the ChiU were glycosylated chitinases. Moreover, matrix assisted laser desorption ionization time-of-flight MS analysis revealed that the ChiU are the same protein and identical to a family 18 chitinase from Streptomyces sp. S4 (gi|498328075). Chi32 was similar to an extracellular protein from Streptomyces albus J1074 (gi|478687481) and Chi20 was non-significantly similar to chitinases from five different strains of Streptomyces (P > 0.05). Subsequently, Chi32 and Chi20 were partially purified by anion exchange and hydrophobic interaction chromatography and tested against M. fijiensis. Chitinases failed to inhibit ascospore germination, but inhibited up to 35 and 62% of germ tube elongation and mycelial growth, respectively. We found that crude culture supernatant and living cells of S. galilaeus CFFSUR-B12 were the most effective in inhibiting M. fijiensis and are potential biocontrol agents of BSD.
Collapse
|
12
|
Efficient transformation of Mycosphaerella fijiensis by underwater shock waves. J Microbiol Methods 2015; 119:98-105. [DOI: 10.1016/j.mimet.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
|
13
|
Escobar-Tovar L, Guzmán-Quesada M, Sandoval-Fernández JA, Gómez-Lim MA. Comparative analysis of the in vitro and in planta secretomes from Mycosphaerella fijiensis isolates. Fungal Biol 2015; 119:447-70. [PMID: 25986542 DOI: 10.1016/j.funbio.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Black Sigatoka, a devastating disease of bananas and plantains worldwide, is caused by the fungus Mycosphaerella fijiensis. Several banana cultivars such as 'Yangambi Km 5' and Calcutta IV, have been known to be resistant to the fungus, but the resistance has been broken in 'Yangambi Km 5' in Costa Rica. Since the resistance of this variety still persists in Mexico, the aim of this study was to compare the in vitro and in planta secretomes from two avirulent and virulent M. fijiensis isolates using proteomics and bioinformatics approaches. We aimed to identify differentially expressed proteins in fungal isolates that differ in pathogenicity and that might be responsible for breaking the resistance in 'Yangambi Km 5'. We were able to identify 90 protein spots in the secretomes of fungal isolates encoding 42 unique proteins and 35 differential spots between them. Proteins involved in carbohydrate transport and metabolism were more prevalent. Several proteases, pathogenicity-related, ROS detoxification and unknown proteins were also highly or specifically expressed by the virulent isolate in vitro or during in planta infection. An unknown protein representing a virulence factor candidate was also identified. These results demonstrated that the secretome reflects major differences between both M. fijiensis isolates.
Collapse
Affiliation(s)
- Lina Escobar-Tovar
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, 36821, Irapuato, Guanajuato, Mexico
| | - Mauricio Guzmán-Quesada
- Dirección de Investigaciones, Sección de Fitopatología, Corporación Bananera Nacional, 390-7210, La Rita, Guápiles, Costa Rica
| | - Jorge A Sandoval-Fernández
- Dirección de Investigaciones, Sección de Fitopatología, Corporación Bananera Nacional, 390-7210, La Rita, Guápiles, Costa Rica
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
14
|
Multiple response optimization of Bacillus subtilis EA-CB0015 culture and identification of antifungal metabolites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|