1
|
Zhu XK, Elsheikha HM, Yang T, Li MY, Cong W. Urban estuary serves as a critical nexus for the land-sea transfer of the terrestrial pathogen Toxoplasma gondii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176983. [PMID: 39419207 DOI: 10.1016/j.scitotenv.2024.176983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Terrestrial runoff is a key pathway for the transmission of the terrestrial pathogen Toxoplasma gondii from land to sea, posing a significant threat to marine ecosystems. Understanding the mechanisms by which T. gondii is transported from terrestrial to marine environment is crucial for developing effective prevention and control strategies for toxoplasmosis in marine organisms. This study investigates the transport of T. gondii through terrestrial runoff in the Sow River, a representative watershed in Weihai, China. Surface water, bottom water and sediment samples were collected and analyzed for T. gondii DNA using PCR methods. Out of 5328 samples, the prevalence of T. gondii was found to be 8.61 % in surface water, 9.80 % in bottom water and 16.61 % in sediment, with sediment identified as a significant reservoir. Additionally, estuarine zones showed a higher prevalence of T. gondii (16.80 %) compared to riverine areas (9.00 %). The study further revealed that seasonal climate variations, such as temperature and precipitation, had no significant impact on the distribution of T. gondii. However, there was significant spatial variability, with estuarine conditions facilitating increased pathogen transmission. These findings highlight the importance of estuaries and sediments as key conduits for T. gondii entry in marine food webs. The results provide a theoretical basis for designing infection prevention and control strategies aimed at protecting marine ecosystems.
Collapse
Affiliation(s)
- Xin-Kun Zhu
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Tao Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Man-Yao Li
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.
| |
Collapse
|
2
|
Gao Y, Chen Q, Liu S, Wang J, Borthwick AGL, Ni J. The mystery of rich human gut antibiotic resistome in the Yellow River with hyper-concentrated sediment-laden flow. WATER RESEARCH 2024; 258:121763. [PMID: 38759286 DOI: 10.1016/j.watres.2024.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Human gut antibiotic resistome widely occur in anoxic environments characterized by high density of bacterial cells and frequent transmission of antibiotic resistance genes (ARGs). Such resistome is greatly diluted, degraded, and restrained in the aerobic habitats within most natural rivers (regarded as "terrestrial guts") connecting continents and the oceans. Here we implemented a large-scale monitoring campaign extending 5,200 km along the Yellow River, and provide the first integral biogeographic pattern for both ARGs and their hosts. We identified plentiful ARGs (24 types and 809 subtypes) and their hosts (24 phyla and 757 MAGs) in three media (water, suspended particulate matter (SPM), and sediment). Unexpectedly, we found diverse human gut bacteria (HGB) acting as supercarriers of ARGs in this oxygen-rich river. We further discovered that numerous microhabitats were created within stratified biofilms that surround SPMs, particularly regarding the aggregation of anaerobic HGB. These microhabitats provide numerous ideal sinks for anaerobic bacteria and facilitate horizontal transfer of ARGs within the stratified biofilms, Furthermore, the stratification of biofilms surrounding SPMs has facilitated synergy between human gut flora and denitrifiers for propagation of ARGs in the anoxic atmospheres, leading to high occurrence of human gut antibiotic resistome. SPMs play active roles in the dynamic interactions of river water and sediment, thus accelerating the evolution of riverine resistome and transmission of human gut antibiotic resistome. This study revealed the special contribution of SPMs to the propagation of ARGs, and highlighted the necessity of making alternative strategies for sustainable management of large rivers with hyper-concentrated sediment-laden flows.
Collapse
Affiliation(s)
- Yuan Gao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qian Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China
| | - Shufeng Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Jiawen Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Alistair G L Borthwick
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Jinren Ni
- Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan 237016, PR China.
| |
Collapse
|
3
|
He Y, Bai M, He Y, Wang S, Zhang J, Jiang S, Wang G. Suspended particles are hotspots for pathogen-related bacteria and ARGs in coastal beach waters of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153004. [PMID: 35026254 DOI: 10.1016/j.scitotenv.2022.153004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Marine suspended particles are unique micro-habitats for diverse microbes and also hotspots of microbially metabolic activities. However, the association of bacterial pathogens, especially those carrying antibiotic resistance genes (ARGs), with these particles remain largely unknown in coastal habitats. This study investigated the distribution of pathogen-related bacteria and ARGs in particle-associated (PA) and free-living (FL) fractions of samples collected at three coastal beaches using NextGen sequencing and qPCR. Suspended particles were found to harbor significantly higher abundances of bacteria of pathogen-related genera and ARGs than their counterparts. Functional analysis of microbial community suggested that antibiotic biosynthetic pathways were also more abundant among PA microbiome comparing to FL microbial community, which further facilitated the spread of ARGs. Additionally, 13 pathogen-related genera co-occurred with ARG in PA fraction while only 2 pathogen-related genera co-occurred with ARGs in FL fraction. Overall, our research revealed suspended particles harbored more abundant pathogen-related genera and ARGs comparing with surrounding waters. Thus, suspended particles are hotspots for pathogen-related genera and ARGs and may pose a greater threat to human health in coastal beach.
Collapse
Affiliation(s)
- Yike He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Suisui Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiabo Zhang
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao 066001, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao 066001, China
| | - Sunny Jiang
- Department of Civil and Environmental Engineering, University of California at Irvine, CA 92697, USA
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
4
|
Fang T, Zhang Z, Wang H, Rogers M, Cui Q. Insights into effects of algae on decay and distribution of bacterial pathogens in recreational water: Implications for microbial risk management. J Environ Sci (China) 2022; 113:92-103. [PMID: 34963553 DOI: 10.1016/j.jes.2021.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/14/2023]
Abstract
The decay and distribution of bacterial pathogens in water is an important information for the health risk assessment to guide water safety management, and suspended algae might affect bacterial pathogens in water. This study established microcosms to investigate the effects of algae-related factors on the representative indicators and opportunistic pathogen species in water. We found that suspended algae increased the persistence of targeted species by 1-2 orders of magnitude of concentrations compared to microcosms without algae; and the effect of algae on microbial survival was affected by water nutrient levels (i.e., carbon, nitrogen and phosphorus), as the increased microbial persistence were correlated to the increased algae concentrations with more nutrient supplies. Moreover, decay and distribution profiles of representative species were determined. The three opportunistic pathogen species (Pseudomonas aeruginosa, Aeromonas hydrophila and Staphylococcus aureus) showed lower decay rates (0.82-0.98/day, 0.76-0.98/day, 0.63-0.87/day) largely affected by algae-related factors, while the enteric species (Escherichia coli and Enterococcus faecalis) had higher decay rates (0.94-1.31/day, 0.89-1.21/day) with little association with algae, indicating the propensity for attachment to algae is an important parameter in microbial fate. Together results suggest suspended algae played an evident role in the decay and distribution of bacterial pathogens, providing important implications regarding microbial safety in recreational water.
Collapse
Affiliation(s)
- Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Matt Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 3, 117576, Singapore
| | - Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Krecek RC, Rabinowitz PM, Conrad PA. Demystifying and Demonstrating the Value of a One Health Approach to Parasitological Challenges. Vet Parasitol 2020; 287:109202. [PMID: 33045550 DOI: 10.1016/j.vetpar.2020.109202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 08/06/2020] [Indexed: 01/20/2023]
Abstract
The One Health approach recognizes the interconnectedness of human, animal, and ecosystem health and encourages collaboration between diverse disciplines to address complex health problems. In this paper, 3 academics, with diverse training, experience and backgrounds who each work on different pathogenic parasites, will share their stories of tackling parasitic challenges by applying a One Health approach. The pathogenic parasites to be discussed include the helminth Taenia solium and protozoans Giardia, Theileria, Babesia, Neospora and Toxoplasma species. The 3 narratives focus on research and clinical case-based challenges and illustrate where collaboration between human, animal, and environmental health scientists either has or could lead to improved control of human and animal health as well as important research discoveries. The need for better evaluation of interventions and scientific evidence to support changes in clinical practice and encourage enhanced collaboration between human and veterinary clinicians, as well as new governmental policies to improve public and wildlife health, are described. The need for a range of evidence-based metrics to monitor the success and impact of the One Health approach to veterinary parasitology is also discussed.
Collapse
Affiliation(s)
- Rosina C Krecek
- 4302 Berwick Place, College Station, Texas 77845, United States; Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Peter M Rabinowitz
- Departments of Environmental and Occupational Health Sciences, Global Health, Family Medicine, University of Washington Center for One Health Research, 1959 NE Pacific Street HSB F551, Box 357234, Seattle, Washington 98195, United States
| | - Patricia A Conrad
- One Health Institute and Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, 1 Shields Avenue, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
6
|
Hanley KT, Wuertz S, Schriewer A, Passow U, Smith W, Olin P, Shapiro K. Effects of salinity and transparent exopolymer particles on formation of aquatic aggregates and their association with norovirus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1514-1521. [PMID: 30189567 DOI: 10.1016/j.scitotenv.2018.06.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/23/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Human noroviruses (NoVs) are responsible for 50% of food-related disease outbreaks and are notably associated with shellfish consumption. Despite the detrimental health impacts of human NoV-contaminated seafood to public health, there is a lack of knowledge on the physicochemical conditions that govern NoV transmission in aquatic ecosystems. In the present study, we investigated the propensity for NoVs to associate with aquatic aggregates, which have been shown to efficiently deliver nano-sized particles to shellfish. Specific physicochemical conditions characteristic of shellfish cultivation waters, specifically salinity and transparent exopolymer particles (TEP), were targeted in this study for investigating aggregate formation and NoV association dynamics. Murine norovirus (MNV) was used in aggregation experiments as a model surrogate for NoVs. Results demonstrate increased aggregate formation as a function of increasing salinity and TEP concentrations, as well as greater numbers of MNV genomes incorporated into aggregates under conditions that favor aggregation. As aggregate formation was enhanced in waters representing optimal conditions for shellfish production, specifically saline and high TEP waters, the implications to virus transport and shellfish food safety are profound: more aggregates implies increased scavenging of virus particles from surrounding waters and therefor greater risk for bivalve contamination with nano-sized pathogens. These novel data provide insight into where and when NoVs are most likely to be ingested by shellfish via contaminated aggregates, thereby informing best management and water quality monitoring practices aimed at providing safe seafood to consumers.
Collapse
Affiliation(s)
- Kaitlyn T Hanley
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Stefan Wuertz
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; School of Civil and Environmental Engineering, NTU, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Alexander Schriewer
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Uta Passow
- UCSB Marine Science Institute, University of California, Bldg 520 Rm 4002 Fl 4L, Santa Barbara, CA 93106, USA
| | - Woutrina Smith
- One Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Paul Olin
- California Sea Grant, UCSD Scripps Institution of Oceanography, 9500 Gilman Drive, Dept. 0232, La Jolla, CA 92093-0232, USA
| | - Karen Shapiro
- One Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Kramer AM, Ward JE, Dobbs FC, Pierce ML, Drake JM. The contribution of marine aggregate-associated bacteria to the accumulation of pathogenic bacteria in oysters: an agent-based model. Ecol Evol 2016; 6:7397-7408. [PMID: 28725407 PMCID: PMC5513250 DOI: 10.1002/ece3.2467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 07/08/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023] Open
Abstract
Bivalves process large volumes of water, leading to their accumulation of bacteria, including potential human pathogens (e.g., vibrios). These bacteria are captured at low efficiencies when freely suspended in the water column, but they also attach to marine aggregates, which are captured with near 100% efficiency. For this reason, and because they are often enriched with heterotrophic bacteria, marine aggregates have been hypothesized to function as important transporters of bacteria into bivalves. The relative contribution of aggregates and unattached bacteria to the accumulation of these cells, however, is unknown. We developed an agent‐based model to simulate accumulation of vibrio‐type bacteria in oysters. Simulations were conducted over a realistic range of concentrations of bacteria and aggregates and incorporated the dependence of pseudofeces production on particulate matter. The model shows that the contribution of aggregate‐attached bacteria depends strongly on the unattached bacteria, which form the colonization pool for aggregates and are directly captured by the simulated oysters. The concentration of aggregates is also important, but its effect depends on the concentration of unattached bacteria. At high bacterial concentrations, aggregates contribute the majority of bacteria in the oysters. At low concentrations of unattached bacteria, aggregates have a neutral or even a slightly negative effect on bacterial accumulation. These results provide the first evidence suggesting that the concentration of aggregates could influence uptake of pathogenic bacteria in bivalves and show that the tendency of a bacterial species to remain attached to aggregates is a key factor for understanding species‐specific accumulation.
Collapse
Affiliation(s)
- Andrew M Kramer
- Odum School of Ecology University of Georgia Athens GA USA.,Center for Ecology of Infectious Diseases University of Georgia Athens GA USA
| | - J Evan Ward
- Department of Marine Sciences University of Connecticut Groton CT USA
| | - Fred C Dobbs
- Department of Ocean, Earth and Atmospheric Sciences Old Dominion University Norfolk VA USA
| | - Melissa L Pierce
- Department of Marine Sciences University of Connecticut Groton CT USA
| | - John M Drake
- Odum School of Ecology University of Georgia Athens GA USA.,Center for Ecology of Infectious Diseases University of Georgia Athens GA USA
| |
Collapse
|
8
|
Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy. Appl Environ Microbiol 2016; 82:3525-3536. [PMID: 27060115 DOI: 10.1128/aem.00520-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial communities during and after Superstorm Sandy to provide fine time point resolution of dynamic changes in bacterial composition. This study adds to the current literature by revealing the variation in bacterial community structure during the course of a storm. This study employed high-throughput DNA sequencing, which generated a deep analysis of inter- and intracommunity responses during a significant storm event. This study has highlighted the utility of applying high-throughput sequencing for water quality monitoring purposes, as this approach enabled a more comprehensive investigation of the bacterial community structure. Altogether, these data suggest a drastic restructuring of the stream bacterial community during a storm event and highlight the potential of high-throughput sequencing approaches for assessing the microbiological quality of our environment.
Collapse
|
9
|
Stief P, Kamp A, Thamdrup B, Glud RN. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels. Front Microbiol 2016; 7:98. [PMID: 26903977 PMCID: PMC4742529 DOI: 10.3389/fmicb.2016.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023] Open
Abstract
In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient oxygen levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (∼100 μmol O2 L-1) and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient oxygen levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate), N2 (up to 7.1 nmol N h-1), NH4+ (up to 2.0 nmol N h-1), and N2O (up to 0.2 nmol N h-1). Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for dinitrogen production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean.
Collapse
Affiliation(s)
- Peter Stief
- Department of Biology and Nordic Center for Earth Evolution, University of Southern Denmark Odense, Denmark
| | - Anja Kamp
- AIAS, Aarhus Institute of Advanced Studies, Aarhus University Aarhus, Denmark
| | - Bo Thamdrup
- Department of Biology and Nordic Center for Earth Evolution, University of Southern Denmark Odense, Denmark
| | - Ronnie N Glud
- Department of Biology and Nordic Center for Earth Evolution, University of Southern Denmark Odense, Denmark
| |
Collapse
|
10
|
Smith MW, Davis RE, Youngblut ND, Kärnä T, Herfort L, Whitaker RJ, Metcalf WW, Tebo BM, Baptista AM, Simon HM. Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River. Front Microbiol 2015; 6:1074. [PMID: 26483785 PMCID: PMC4589670 DOI: 10.3389/fmicb.2015.01074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/18/2015] [Indexed: 11/27/2022] Open
Abstract
Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs) produced ∼100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e., the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria) and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary.
Collapse
Affiliation(s)
- Maria W Smith
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - Richard E Davis
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | | | - Tuomas Kärnä
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - Lydie Herfort
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - William W Metcalf
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - Bradley M Tebo
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - António M Baptista
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - Holly M Simon
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| |
Collapse
|
11
|
Davidson MCF, Berardi T, Aguilar B, Byrne BA, Shapiro K. Effects of transparent exopolymer particles and suspended particles on the survival of Salmonella enterica serovar Typhimurium in seawater. FEMS Microbiol Ecol 2015; 91:fiv005. [DOI: 10.1093/femsec/fiv005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Shapiro K, Krusor C, Mazzillo FFM, Conrad PA, Largier JL, Mazet JAK, Silver MW. Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proc Biol Sci 2014; 281:20141287. [PMID: 25297861 PMCID: PMC4213613 DOI: 10.1098/rspb.2014.1287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/15/2014] [Indexed: 01/20/2023] Open
Abstract
Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff.
Collapse
Affiliation(s)
- Karen Shapiro
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Colin Krusor
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Patricia A Conrad
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - John L Largier
- Bodega Marine Laboratory and Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Mary W Silver
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
13
|
Malham SK, Rajko-Nenow P, Howlett E, Tuson KE, Perkins TL, Pallett DW, Wang H, Jago CF, Jones DL, McDonald JE. The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2145-2155. [PMID: 25043898 DOI: 10.1039/c4em00031e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anthropogenic activities have increased the load of faecal bacteria, pathogenic viruses and nutrients in rivers, estuaries and coastal areas through point and diffuse sources such as sewage discharges and agricultural runoff. These areas are used by humans for both commercial and recreational activities and are therefore protected by a range of European Directives. If water quality declines in these zones, significant economic losses can occur. Identifying the sources of pollution, however, is notoriously difficult due to the ephemeral nature of discharges, their diffuse source, and uncertainties associated with transport and transformation of the pollutants through the freshwater-marine interface. Further, significant interaction between nutrients, microorganisms and particulates can occur in the water column making prediction of the fate and potential infectivity of human pathogenic organisms difficult to ascertain. This interaction is most prevalent in estuarine environments due to the formation of flocs (suspended sediment) at the marine-freshwater interface. A range of physical, chemical and biological processes can induce the co-flocculation of microorganisms, organic matter and mineral particles resulting in pathogenic organisms becoming potentially protected from a range of biotic (e.g. predation) and abiotic stresses (e.g. UV, salinity). These flocs contain and retain macro- and micro- nutrients allowing the potential survival, growth and transfer of pathogenic organisms to commercially sensitive areas (e.g. beaches, shellfish harvesting waters). The flocs can either be transported directly to the coastal environment or can become deposited in the estuary forming cohesive sediments where pathogens can survive for long periods. Especially in response to storms, these sediments can be subsequently remobilised releasing pulses of potential pathogenic organisms back into the water column leading to contamination of marine waters long after the initial contamination event occurred. Further work, however, is still required to understand and predict the potential human infectivity of pathogenic organisms alongside the better design of early warning systems and surveillance measures for risk assessment purposes.
Collapse
Affiliation(s)
- Shelagh K Malham
- Centre for Applied Marine Science, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Daniels ME, Hogan J, Smith WA, Oates SC, Miller MA, Hardin D, Shapiro K, Los Huertos M, Conrad PA, Dominik C, Watson FGR. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:1036-1046. [PMID: 25016109 DOI: 10.1016/j.scitotenv.2014.06.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads.
Collapse
Affiliation(s)
- Miles E Daniels
- Division of Science and Environmental Policy, California State University, Monterey Bay, 100 Campus Center, Seaside, CA, 93955, USA; Veterinary Medicine and Epidemiology Department, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Jennifer Hogan
- Veterinary Medicine and Epidemiology Department, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Woutrina A Smith
- Veterinary Medicine and Epidemiology Department, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Stori C Oates
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, Santa Cruz, CA, 95062, USA
| | - Melissa A Miller
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, Santa Cruz, CA, 95062, USA
| | - Dane Hardin
- Applied Marine Sciences and Central Coast Long-Term Environmental Assessment Network, Santa Cruz, CA, 95062, USA
| | - Karen Shapiro
- Veterinary Medicine and Epidemiology Department, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Marc Los Huertos
- Division of Science and Environmental Policy, California State University, Monterey Bay, 100 Campus Center, Seaside, CA, 93955, USA
| | - Patricia A Conrad
- Veterinary Medicine and Epidemiology Department, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Clare Dominik
- Applied Marine Sciences and Central Coast Long-Term Environmental Assessment Network, Santa Cruz, CA, 95062, USA
| | - Fred G R Watson
- Division of Science and Environmental Policy, California State University, Monterey Bay, 100 Campus Center, Seaside, CA, 93955, USA
| |
Collapse
|
15
|
Williamson KE, Harris JV, Green JC, Rahman F, Chambers RM. Stormwater runoff drives viral community composition changes in inland freshwaters. Front Microbiol 2014; 5:105. [PMID: 24672520 PMCID: PMC3954104 DOI: 10.3389/fmicb.2014.00105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/27/2014] [Indexed: 11/30/2022] Open
Abstract
Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities.
Collapse
Affiliation(s)
- Kurt E Williamson
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Jamie V Harris
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Jasmin C Green
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Faraz Rahman
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Randolph M Chambers
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| |
Collapse
|