1
|
Mitbavkar S, D'souza S. Seasonal Dynamics of Photosynthetic Picoeukaryotes in a Monsoon-Influenced Tropical Bay: a Flow Cytometric and Chemotaxonomic Approach. MICROBIAL ECOLOGY 2023; 85:341-356. [PMID: 35179631 DOI: 10.1007/s00248-022-01978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The composition and ecology of photosynthetic picoeukaryotes (PPE) are essential for understanding microbial food web functioning. We hypothesize that the simultaneous use of flow cytometry (FCM) and high-performance liquid chromatography (HPLC) tools will aid in discerning the dominant PPE groups contributing to abundance and biomass under prevailing environmental conditions. The PPE seasonal community abundance and pigment biomass were investigated from a southwest monsoon-influenced tropical bay from June 2015 to May 2016. A size-fractionated (<3 µm) approach using FCM and HPLC revealed five and six PPE groups, respectively. Picocryptophytes dominated the PPE biomass under varied environmental conditions, whereas picodiatoms contributed substantially, being abundant under turbulent, low-temperature, nutrient (NO3-, SiO44-)-enriched conditions. The picochlorophytes dominated the community numerically. The relatively higher abundance and biomass of picoprasinophytes and a positive correlation with NO3- and NH4+ imply proliferation under higher nutrient concentrations. The least contributors to biomass were dinoflagellates and picoprymnesiophytes. The relatively larger cell size of picocryptophytes and picodiatoms resulted in higher cumulative biomass, signifying their role in the microbial food web. Our study proposes incorporation of additional indicator pigments in algorithms used to estimate coastal picophytoplankton contribution to total phytoplankton biomass to avoid discrepancies.
Collapse
Affiliation(s)
- Smita Mitbavkar
- National Institute of Oceanography, Council of Scientific and Industrial Research, Dona Paula, Goa, 403 004, India.
| | - Samantha D'souza
- National Institute of Oceanography, Council of Scientific and Industrial Research, Dona Paula, Goa, 403 004, India
| |
Collapse
|
2
|
Tinnevelt GH, Lushchikova O, Augustijn D, Lochs M, Geertsma RW, Rijkeboer M, Kools H, Dubelaar G, Veen A, Buydens LMC, Jansen JJ. Water quality monitoring based on chemometric analysis of high-resolution phytoplankton data measured with flow cytometry. ENVIRONMENT INTERNATIONAL 2022; 170:107587. [PMID: 36274492 DOI: 10.1016/j.envint.2022.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
River water is an important source of Dutch drinking water. For this reason, continuous monitoring of river water quality is needed. However, comprehensive chemical analyses with high-resolution gas chromatography [GC]-mass spectrometry [MS]/liquid chromatography [LC]-MS are quite tedious and time consuming; this makes them poorly fit for routine water quality monitoring and, therefore, many pollution events are missed. Phytoplankton are highly sensitive and responsive to toxicity, which makes them highly usable for effect-based water quality monitoring. Flow cytometry can measure the optical properties of phytoplankton every hour, generating a large amount of information-rich data in one year. However, this requires chemometrics, as the resulting fingerprints need to be processed into information about abnormal phytoplankton behaviour. We developed Discriminant Analysis of Multi-Aspect CYtometry (DAMACY) to model the "normal condition" of the phytoplankton community imposed by diurnal, meteorological, and other exogenous influences. DAMACY first describes the cellular variability and distribution of phytoplankton in each measurement using principal component analysis, and then aims to find subtle differences in these phytoplankton distributions that predict normal environmental conditions. Deviations from these normal environmental conditions indicated abnormal phytoplankton behaviour that happened alongside pollution events measured with the GC/MS and LC/MS systems. Thus, our results demonstrate that flow cytometry in combination with chemometrics may be used for an automated hourly assessment of river water quality and as a near real-time early warning for detecting harmful known or unknown contaminants. Finally, both the flow cytometer and the DAMACY algorithm run completely autonomous and only requires maintenance once or twice per year. The warning system results may be uploaded automatically, so that drinking water companies may temporary stop pumping water whenever abnormal phytoplankton behaviour is detected. In the case of prolonged abnormal phytoplankton behaviour, comprehensive analysis may still be used to identify the chemical compound, its origin, and toxicity.
Collapse
Affiliation(s)
- Gerjen H Tinnevelt
- Radboud University, Institute for Molecules and Materials, (Analytical Chemistry), P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; TI-COAST, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Olga Lushchikova
- Radboud University, Institute for Molecules and Materials, (Analytical Chemistry), P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; TI-COAST, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Dillen Augustijn
- Radboud University, Institute for Molecules and Materials, (Analytical Chemistry), P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; TI-COAST, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Mathijs Lochs
- Radboud University, Institute for Molecules and Materials, (Analytical Chemistry), P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; TI-COAST, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Rinze W Geertsma
- Laboratory for Hydrobiological Analysis, Rijkswaterstaat (RWS), Zuiderwagenplein 2, 8224 AD Lelystad, the Netherlands
| | - Machteld Rijkeboer
- Laboratory for Hydrobiological Analysis, Rijkswaterstaat (RWS), Zuiderwagenplein 2, 8224 AD Lelystad, the Netherlands
| | - Harrie Kools
- CytoBuoy bv, Johan de Wittlaan 11, 3445 AG Woerden, the Netherlands
| | - George Dubelaar
- CytoBuoy bv, Johan de Wittlaan 11, 3445 AG Woerden, the Netherlands
| | - Arnold Veen
- CytoBuoy bv, Johan de Wittlaan 11, 3445 AG Woerden, the Netherlands
| | - Lutgarde M C Buydens
- Radboud University, Institute for Molecules and Materials, (Analytical Chemistry), P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Jeroen J Jansen
- Radboud University, Institute for Molecules and Materials, (Analytical Chemistry), P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
3
|
Mao F, Li W, Sim ZY, He Y, Chen Q, Yew-Hoong Gin K. Phycocyanin-rich Synechococcus dominates the blooms in a tropical estuary lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114889. [PMID: 35287073 DOI: 10.1016/j.jenvman.2022.114889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms challenge the safe water supply in estuary reservoirs. Yet, data are limited for the variation of phytoplankton dynamics during an algal bloom event at refined scales, which is essential for interpreting the formation and cessation of blooms. The present study investigated the biweekly abundances and dynamics of pico- and nano-phytoplankton in a tropical estuary lake following a prolonged bloom event. Flow cytometry analysis resolved eight phenotypically distinct groups of phytoplankton assigned to nano-eukaryotes (nano-EU), pico/nano-eukaryotes (PicoNano-EU), cryptophyte-like cells (CRPTO), Microcystis-like cells (MIC), pico-eukaryotes (Pico-EU) and three groups of Synechococcus-like cells. Total phytoplankton abundance ranged widely from 2.4 × 104 to 2.8 × 106 cells cm-3. The phytoplankton community was dominated by Synechococcus-like cells with high phycocyanin content (SYN-PC). Temporal dynamics of the phytoplankton community was phytoplankton- and site-specific. Peak values were observed for SYN-PC, SYN-PE2 (Synechococcus-like cells with low levels of phycoerythrin) and Pico-EU, while the temporal dynamics of other groups were less pronounced. Redundancy analysis (RDA) showed the importance of turbidity as an abiotic factor in the formation of the current SYN-PC induced blooms, and Spearman correlation analysis suggested a competitive relationship between SYN-PC and Pico-EU.
Collapse
Affiliation(s)
- Feijian Mao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Wenxuan Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Zhi Yang Sim
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Yiliang He
- Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuwen Chen
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore, 117576, Singapore.
| |
Collapse
|
4
|
Alegria Zufia J, Farnelid H, Legrand C. Seasonality of Coastal Picophytoplankton Growth, Nutrient Limitation, and Biomass Contribution. Front Microbiol 2021; 12:786590. [PMID: 34938282 PMCID: PMC8685431 DOI: 10.3389/fmicb.2021.786590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Picophytoplankton in the Baltic Sea includes the simplest unicellular cyanoprokaryotes (Synechococcus/Cyanobium) and photosynthetic picoeukaryotes (PPE). Picophytoplankton are thought to be a key component of the phytoplankton community, but their seasonal dynamics and relationships with nutrients and temperature are largely unknown. We monitored pico- and larger phytoplankton at a coastal site in Kalmar Sound (K-Station) weekly during 2018. Among the cyanoprokaryotes, phycoerythrin-rich picocyanobacteria (PE-rich) dominated in spring and summer while phycocyanin-rich picocyanobacteria (PC-rich) dominated during autumn. PE-rich and PC-rich abundances peaked during summer (1.1 × 105 and 2.0 × 105 cells mL–1) while PPE reached highest abundances in spring (1.1 × 105 cells mL–1). PPE was the main contributor to the total phytoplankton biomass (up to 73%). To assess nutrient limitation, bioassays with combinations of nitrogen (NO3 or NH4) and phosphorus additions were performed. PE-rich and PC-rich growth was mainly limited by nitrogen, with a preference for NH4 at >15°C. The three groups had distinct seasonal dynamics and different temperature ranges: 10°C and 17–19°C for PE-rich, 13–16°C for PC-rich and 11–15°C for PPE. We conclude that picophytoplankton contribute significantly to the carbon cycle in the coastal Baltic Sea and underscore the importance of investigating populations to assess the consequences of the combination of high temperature and NH4 in a future climate.
Collapse
Affiliation(s)
- Javier Alegria Zufia
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Hanna Farnelid
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| |
Collapse
|
5
|
Ning M, Li H, Xu Z, Chen L, He Y. Picophytoplankton identification by flow cytometry and high-throughput sequencing in a clean reservoir. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112216. [PMID: 33853024 DOI: 10.1016/j.ecoenv.2021.112216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Understanding picophytoplankton variations that play important roles in the material circulation and energy flow are critical to assessing overall status of waterbody, especially for clean reservoirs which remain a relatively stable community structure and high species diversity due to lower nitrogen and phosphorus nutrients. However, their response to key environmental factors and tightly acting microbial remains poorly understood. Traditional quantification methods are limited, such as chlorophyll-a, turbidity and microscope. There are still many defects with present molecular analysis. In this study, a flow cytometric analysis and high-throughput sequencing combination methodology was developed and tested on clean water from a reservoir, by a monthly dynamic for a vegetative period April-September in 2019 to improve the accuracy of dynamic monitoring for the picophytoplankton system. More species of Pico-Cyanobacteria and Pico-Eukaryotes were discovered. The increased percentage of pigment compounds from 8.2% to 76.3% proves the effective reduce of heterotrophic disturbing and enrichment of target populations. Picophytoplankton that was previously neglected due to their low relative abundance has once again entered the scope of our eyes. Phytoplankton were divided into three categories. The first one was the highly abundant and frequently present taxa, the second one was the low-abundance but highly-transient population, and the third one was the low abundance and stable group. Synechococcus, Emiliania, Tetraselmis and Thalassiosira were dominant picophytoplankton and displayed obvious temporal and spatial distribution characteristics. Pico-PE rich Cyanobacteria and Nano-Eukaryotes with high transience abnormally increased in summer. Temperature, ammonia-N, nitrate-N, turbidity and total nitrogen were most influencing factors, while some picophytoplankton with special physiological structure showed distinct competitive advantages in the microbial community. As for the off-flavor compounds, the concentration of 2-methylisoborneol and geosmin were high even 66.7% and 20.8% of the samples exceeded their olfactory threshold. Chrysochromuina, Planktothrix and Microcystis might be the potential producers.
Collapse
Affiliation(s)
- Man Ning
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai 201306, China
| | - Huimin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng Xu
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai 201306, China
| | - Lei Chen
- National Engineering Research Center of Urban Water Resources, 230 Xuchang Road, Shanghai 200082, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Kurian S, Chndrasekhararao AV, Vidya PJ, Shenoy DM, Gauns M, Uskaikar H, Aparna SG. Role of oceanic fronts in enhancing phytoplankton biomass in the eastern Arabian Sea during an oligotrophic period. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105023. [PMID: 32907734 DOI: 10.1016/j.marenvres.2020.105023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In the present study, using in-situ and satellite observations, we investigate the influence of physical processes on the enhancement of phytoplankton biomass in the eastern Arabian Sea (EAS). Water column measurements were carried out from 9⁰N to 21⁰N (stations II-2 to II-14) along 68⁰E transect in the EAS during the beginning of fall intermonsoon (FIM) of 2014. Both in-situ and satellite-derived chlorophyll a (Chl a) showed higher biomass at 15⁰N (station II-8) compared to northern and southern stations. We explored the possible physical processes which can lead to high biological productivity at this station. Our study shows that nearly two times enhancement in Chl a at station II-8 was contributed by an open-ocean front, which occurred two days before the measurement. Based on phytoplankton marker pigments, it was evident that haptophytes were abundant at II-8 with a minor contribution from diatoms and dinoflagellates. This condition also led to a high concentration (4.9 nM) of dimethylsulphide (DMS), an anti-green house gas with a net flux of 3.76 μmol m-2d-1 at this site. Among the picophytoplankton, Synechococcus were abundant at this station, however Prochlorococcus were absent as confirmed by both marker pigment and flow cytometric counts. The case study presented here demonstrates the dynamic nature of open ocean fronts and their overall contribution to the productivity of the eastern Arabian Sea during the oligotrophic inter-monsoon period.
Collapse
Affiliation(s)
- Siby Kurian
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | - A V Chndrasekhararao
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India; Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - P J Vidya
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Damodar M Shenoy
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Mangesh Gauns
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Hema Uskaikar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - S G Aparna
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| |
Collapse
|
7
|
Pujari L, Wu C, Kan J, Li N, Wang X, Zhang G, Shang X, Wang M, Zhou C, Sun J. Diversity and Spatial Distribution of Chromophytic Phytoplankton in the Bay of Bengal Revealed by RuBisCO Genes ( rbcL). Front Microbiol 2019; 10:1501. [PMID: 31333613 PMCID: PMC6624743 DOI: 10.3389/fmicb.2019.01501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022] Open
Abstract
Phytoplankton are the basis of primary production and play important roles in regulating energy export in marine ecosystems. Compared to other regions, chromophytic phytoplankton are considerably understudied in the Bay of Bengal (BOB). Here, we investigated community structure and spatial distribution of chromophytic phytoplankton in the BOB by using RuBisCO genes (Form ID rbcL). High throughput sequencing of rbcL genes revealed that diatoms, cyanobacteria (Cyanophyceae), Pelagophyceae, Haptophyceae, Chrysophyceae, Eustigamatophyceae, Xanthophyceae, Cryptophyceae, Dictyochophyceae, and Pinguiophyceae were the most abundant groups recovered in the BOB. Abundances and distribution of diatoms and Pelagophyceae were further verified using quantitative PCR analyses which showed the dominance of these groups near the Equator region (p < 0.01) where upwelling was likely the source of nutrients. Further, redundancy analysis demonstrated that temperature was an important environmental driver in structuring distributions of Cyanophyceae and dominant chromophytic phytoplankton. Morphological identification and quantification confirmed the dominance of diatoms, and also detected other cyanobacteria and dinoflagellates that were missing in our molecular characterizations. Pearson’s correlations of these morphologically identified phytoplankton with environmental gradients also indicated that nutrients and temperature were key variables shaping community structure. Combination of molecular characterization and morphological identification provided a comprehensive overview of chromophytic phytoplankton. This is the first molecular study of chromophytic phytoplankton accomplished in the BOB, and our results highlight a combination of molecular analysis targeting rbcL genes and microscopic detection in examining phytoplankton composition and diversity.
Collapse
Affiliation(s)
- Laxman Pujari
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Chao Wu
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, United States
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Xingzhou Wang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Guicheng Zhang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaomei Shang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Min Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Chun Zhou
- Key Laboratory of Physical Oceanography/CIMST, Ocean University of China, Qingdao, China
| | - Jun Sun
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|