1
|
Álvarez-Pérez S, Anega B, Blanco JL, Hernández M, García ME. In vitro activity of fidaxomicin and combinations of fidaxomicin with other antibiotics against Clostridium perfringens strains isolated from dogs and cats. BMC Vet Res 2023; 19:238. [PMID: 37974163 PMCID: PMC10652485 DOI: 10.1186/s12917-023-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that fidaxomicin, a macrocyclic lactone antibiotic used to treat recurrent Clostridioides difficile-associated diarrhea, also displays potent in vitro bactericidal activity against Clostridium perfringens strains isolated from humans. However, to date, there is no data on the susceptibility to fidaxomicin of C. perfringens strains of animal origin. On the other hand, although combination therapy has become popular in human and veterinary medicine, limited data are available on the effects of antibiotic combinations on C. perfringens. We studied the in vitro response of 21 C. perfringens strains obtained from dogs and cats to fidaxomicin and combinations of fidaxomicin with six other antibiotics. RESULTS When tested by an agar dilution method, fidaxomicin minimum inhibitory concentrations (MICs) ranged between 0.004 and 0.032 µg/ml. Moreover, the results of Etest-based combination assays revealed that the incorporation of fidaxomicin into the test medium at a concentration equivalent to half the MIC significantly increased the susceptibility of isolates to metronidazole and erythromycin in 71.4% and 61.9% of the strains, respectively, and the susceptibility to clindamycin, imipenem, levofloxacin, and vancomycin in 42.9-52.4% of the strains. In contrast, ¼ × MIC concentrations of fidaxomicin did not have any effect on levofloxacin and vancomycin MICs and only enhanced the effects of clindamycin, erythromycin, imipenem, and metronidazole in ≤ 23.8% of the tested strains. CONCLUSIONS The results of this study demonstrate that fidaxomicin is highly effective against C. perfringens strains of canine and feline origin. Although fidaxomicin is currently considered a critically important antimicrobial that has not yet been licensed for veterinary use, we consider that the results reported in this paper provide useful baseline data to track the possible emergence of fidaxomicin resistant strains of C. perfringens in the veterinary setting.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Blanca Anega
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Santos RAND, Abdel-Nour J, McAuley C, Moore SC, Fegan N, Fox EM. Clostridium perfringens associated with dairy farm systems show diverse genotypes. Int J Food Microbiol 2022; 382:109933. [PMID: 36166891 DOI: 10.1016/j.ijfoodmicro.2022.109933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Clostridium perfringens is a bacterial species of importance to both public and animal health. Frequently found in food system environments, it presents a risk to food animal health such as dairy herds, and may cross contaminate associated ingredients or food products, with potential to cause sporadic and outbreaks of disease in human populations, including gastroenteric illness. In this study, we characterized C. perfringens isolated from bovine, caprine, and ovine dairy farm systems (n = 8, 11 and 4, respectively). Isolates were phenotypically screened for antimicrobial sensitivity profiling, and subjected to whole genome sequencing to elucidate related genetic markers, as well as examine virulence gene markers, mobile genetic elements, and other features. Both toxin type A and type D isolates were identified (78 % and 22 % of isolates, respectively), including 20 novel sequence types. Resistance to clindamycin was most prevalent among antibiotics screened (30 %), followed by erythromycin (13 %), then penicillin and tetracycline (4 %), although an additional 3 isolates were non-susceptible to tetracycline. Most isolates harboured plasmids, which mobilised virulence markers such as etx, cpb2, and resistance markers tetA(P), tetB(P), and erm(Q), on conjugative plasmids. The presence of type D isolates on caprine farms emphasizes the need for control efforts to prevent infection and potential enterotoxemia. Clostridium perfringens enterotoxin (cpe) was not identified, suggesting lower risk of gastrointestinal illness from contaminated foods, the presence of other virulence and antimicrobial resistance markers suggests farm hygiene remains an important consideration to help ensure food safety of associated dairy foods produced.
Collapse
Affiliation(s)
| | | | - Cathy McAuley
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Sean C Moore
- CSIRO Agriculture and Food, Cooper Plains, QLD 4108, Australia
| | - Narelle Fegan
- CSIRO Agriculture and Food, Cooper Plains, QLD 4108, Australia
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Hussain MI, Borah P, Hussain I, Sharma RK, Kalita MC. Densitometric analysis of rep-PCR data: Insight into genetic variability and transmission of Clostridium perfringens typed with an improved multiplex PCR. Anaerobe 2021; 70:102383. [PMID: 34089857 DOI: 10.1016/j.anaerobe.2021.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/15/2022]
Abstract
An epidemiological study was conducted in North-East India (part of Indo-Burma biodiversity hotspot) to better understand the distribution, diversity, and transmission of Clostridium perfringens among livestock, pets, wild animals (captive), and humans. A total of 160 C. perfringens isolates were recovered from 642 diarrhoeic faecal samples with an isolation rate of 24.92%. Isolation rate was the highest among captive wild animals (37.5%) followed by dog (34.6%), human (33.8%), pig (32.7%), cattle (20.8%), goat (18.3%) and poultry (9.3%). Isolates were toxin typed using a seven gene multiplex PCR designed for simultaneous detection of cpa, cpb, cpb2, etx, iap, cpe and netB. The majority of isolates, 128 (80%) were of type A, followed by 17 (10.62%), 5 (3.12%), 4 (2.5%), 3 (1.87%), 2 (1.25%) and 1 (0.63%) isolates of type C, D, E, G, F and B, respectively. Beta 2 toxin gene was present in 65 (50%) of type A isolates, followed by 7 (41.2%), 4 (80%), 1(25%), and 1 (100%) of type C, D, G and B isolates, respectively. Beta 2 toxin has a high prevalence among dogs (28.6%), cattle (27.3%), and pig (20.8%) compared to humans, goat, wild animals, and poultry (1.2-14.3%). The prevalence of CPE and NetB toxin-positive strains was low, with only 3 (1.8%) and 5 (3.1%) isolates, respectively. Association of C. perfringens with diarrhoea in Civet Cat, Golden Langur, and Gray Langur has been reported for the first time. The genetic diversity and transmission of isolates were investigated using automated rep-PCR (Diversilab®, bioMérieux) using two densitometry-based matrices: modified Kullback-Leibler (KL) and Pearson's correlation (PC). The PC and modified KL matrices formed three distinct clusters with 59% and 27.2% similarity, respectively. C. perfringens diversity and transmission were best studied using modified KL matrix that placed more emphasis on the presence of bands rather than intensity. However, the PC method was found to be more suitable for differentiating strains within a toxin type, with slightly higher D-values.
Collapse
Affiliation(s)
- Md Iftikar Hussain
- Department of Bioengineering and Technology, Gauhati University, Assam, 781014, India.
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Assam, 781022, India; Advanced State Biotech Hub (Assam), College of Veterinary Science, Assam Agricultural University, Assam, 781022, India.
| | - Isfaqul Hussain
- Division of Veterinary Microbiology and Immunology, FVSc and AH, SKUAST-Kashmir, J&K, 190006, India.
| | - Rajeev Kumar Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Assam, 781022, India.
| | | |
Collapse
|
4
|
Archambault M, Rubin JE. Antimicrobial Resistance in Clostridium and Brachyspira spp. and Other Anaerobes. Microbiol Spectr 2020; 8:10.1128/microbiolspec.arba-0020-2017. [PMID: 31971162 PMCID: PMC10773235 DOI: 10.1128/microbiolspec.arba-0020-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/26/2023] Open
Abstract
This article describes the antimicrobial resistance to date of the most frequently encountered anaerobic bacterial pathogens of animals. The different sections show that antimicrobial resistance can vary depending on the antimicrobial, the anaerobe, and the resistance mechanism. The variability in antimicrobial resistance patterns is also associated with other factors such as geographic region and local antimicrobial usage. On occasion, the same resistance gene was observed in many anaerobes, whereas some were limited to certain anaerobes. This article focuses on antimicrobial resistance data of veterinary origin.
Collapse
Affiliation(s)
- Marie Archambault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Joseph E Rubin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
5
|
Álvarez-Pérez S, Blanco JL, Astorga RJ, Gómez-Laguna J, Barrero-Domínguez B, Galán-Relaño A, Harmanus C, Kuijper E, García ME. Distribution and tracking of Clostridium difficile and Clostridium perfringens in a free-range pig abattoir and processing plant. Food Res Int 2018; 113:456-464. [PMID: 30195542 DOI: 10.1016/j.foodres.2018.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/10/2018] [Accepted: 07/28/2018] [Indexed: 12/14/2022]
Abstract
The presence and genetic diversity of Clostridium difficile and C. perfringens along the slaughtering process of pigs reared in a free-range system was assessed. A total of 270 samples from trucks, lairage, slaughter line and quartering were analyzed, and recovered isolates were toxinotyped and genotyped. C. difficile and C. perfringens were retrieved from 14.4% and 12.6% of samples, respectively. The highest percentage of positive samples for C. difficile was detected in trucks (80%) whereas C. perfringens was more prevalent in cecal and colonic samples obtained in the slaughter line (85% and 45%, respectively). C. difficile isolates (n = 105) were classified into 17 PCR ribotypes (including 010, 078, and 126) and 95 AFLP genotypes. C. perfringens isolates (n = 85) belonged to toxinotypes A (94.1%) and C (5.9%) and were classified into 80 AFLP genotypes. The same genotypes of C. difficile and C. perfringens were isolated from different pigs and occasionally from environmental samples, suggesting a risk of contaminated meat products.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Rafael J Astorga
- Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Belén Barrero-Domínguez
- Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Angela Galán-Relaño
- Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Celine Harmanus
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ed Kuijper
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Álvarez-Pérez S, Blanco JL, García ME. Clostridium perfringensType A Isolates of Animal Origin with Decreased Susceptibility to Metronidazole Show Extensive Genetic Diversity. Microb Drug Resist 2017; 23:1053-1058. [DOI: 10.1089/mdr.2016.0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - José L. Blanco
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta E. García
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Orden C, Neila C, Blanco JL, Álvarez-Pérez S, Harmanus C, Kuijper EJ, García ME. Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium difficile. Zoonoses Public Health 2017; 65:88-95. [PMID: 28686001 DOI: 10.1111/zph.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 12/13/2022]
Abstract
Different studies have suggested that the sand of public playgrounds could have a role in the transmission of infections, particularly in children. Furthermore, free access of pets and other animals to the playgrounds might increase such a risk. We studied the presence of Clostridium difficile in 20 pairs of sandboxes for children and dogs located in different playgrounds within the Madrid region (Spain). Clostridium difficile isolation was performed by enrichment and selective culture procedures. The genetic (ribotype and amplified fragment length polymorphism [AFLP]) diversity and antibiotic susceptibility of isolates was also studied. Overall, 52.5% (21/40) of samples were positive for the presence of C. difficile. Eight of the 20 available isolates belonged to the toxigenic ribotypes 014 (n = 5) and 106 (n = 2), both regarded as epidemic, and CD047 (n = 1). The other 12 isolates were non-toxigenic, and belonged to ribotypes 009 (n = 5), 039 (n = 4), and 067, 151 and CD048 (one isolate each). Nevertheless, all isolates (even those of a same ribotype) were classified into different AFLP genotypes indicating non-relatedness. In conclusion, our results revealed the presence of epidemic ribotypes of C. difficile in children's and dog's sandboxes located nearby, which constitutes a major health risk.
Collapse
Affiliation(s)
- Cristina Orden
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Neila
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Celine Harmanus
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Prevalence and characteristics of Clostridium perfringens and Clostridium difficile in dogs and cats attended in diverse veterinary clinics from the Madrid region. Anaerobe 2017; 48:47-55. [PMID: 28687280 DOI: 10.1016/j.anaerobe.2017.06.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Abstract
Despite extensive research on the epidemiology of pathogenic clostridia in dogs and cats, most published studies focus on a selected animal population and/or a single veterinary medical centre. We assessed the burden of Clostridium perfringens and C. difficile shedding by small animals in 17 veterinary clinics located within the Madrid region (Spain) and differing in size, number and features of animals attended and other relevant characteristics. In addition, we studied the genetic diversity and antibiotic susceptibility of recovered isolates. Selective culture of all fecal specimens collected during a single week from dogs (n = 105) and cats (n = 37) attended in participating clinics yielded C. perfringens/C. difficile from 31%, 4.8% of the dogs, and 20%, 0% of the cats analyzed, respectively, and three dogs yielded both species. Furthermore, 17 animals (15 dogs and two cats) that yielded a positive culture for either species were recruited for a follow-up survey and C. perfringens was again obtained from nine dogs. Considerable differences in prevalence were observed among participating clinics for both clostridial species. C. perfringens isolates (n = 109) belonged to toxinotypes A (97.2%) and E (three isolates from one dog), whereas C. difficile isolates (n = 18) belonged to the toxigenic ribotypes 106 (33.3%) and 154 (16.7%), a 009-like ribotype (33.3%) and an unknown non-toxigenic ribotype (16.7%). Amplified fragment length polymorphism-based fingerprinting classified C. perfringens and C. difficile isolates into 105 and 15 genotypes, respectively, and tested isolates displayed in vitro resistance to benzylpenicillin (2.8%, 88.8%), clindamycin (0%, 16.7%), erythromycin (0.9%, 16.7%), imipenem (1.8%, 100%), levofloxacin (0.9%, 100%), linezolid (5.5%, 0%), metronidazole (4.6%, 0%) and/or tetracycline (7.3%, 0%). All animals from which multiple isolates were retrieved yielded ≥2 different genotypes and/or antimicrobial susceptibility profiles. Future studies should focus on the seasonal and geographical variations of prevalence and diversity patterns of clostridial species in small animals.
Collapse
|
9
|
Xu F, Cheng G, Hao H, Wang Y, Wang X, Chen D, Peng D, Liu Z, Yuan Z, Dai M. Mechanisms of Antibacterial Action of Quinoxaline 1,4-di- N-oxides against Clostridium perfringens and Brachyspira hyodysenteriae. Front Microbiol 2016; 7:1948. [PMID: 28018297 PMCID: PMC5147047 DOI: 10.3389/fmicb.2016.01948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) are a class of bioreductive compounds, however, their antibacterial mechanisms are still unclarified. The aim of this study was to assess the ability of two representative QdNO drugs, cyadox (CYA) and olaquindox (OLA), to produce reactive oxide species (ROS) in Gram-positive anaerobe Clostridium perfringens CVCC1125 and Gram-negative anaerobe Brachyspira hyodysenteriae B204. In addition, the effects of QdNOs on the integrity of bacterial cell walls and membranes as well as the morphological alterations and DNA oxidative damage in C. perfringens and B. hyodysenteriae were analyzed. It was demonstrated that under anaerobic conditions, QdNOs were metabolized into the reduced products which did not show any antibacterial activity. A significant dose-related increase of intracellular ROS level and intracellular hydroxyl radicals were evident in bacteria exposed to QdNOs. The result of biochemical assay showed that the cell walls and membranes of the bacteria treated with QdNOs were damaged. After exposure to 1/2MIC to 4MIC of CYA and OLA, C. perfringens and B. hyodysenteriae became elongated and filamentous. Morphological observation with scanning and transmission electron microscopes revealed rupture, loss of cytoplasmic material and cell lysis in QdNO-treated bacteria, indicating serious damage of cells. There was an increase of 8-OHdG in the two strains treated by QdNOs, but it was lower in C. perfringens CVCC1125 than in B. hyodysenteriae B204. Agarose gel electrophoresis showed the degradation of chromosomal DNA in both of the two anaerobes treated by QdNOs. The results suggest that QdNOs may kill C. perfringens and B. hyodysenteriae via the generation of ROS and hydroxyl radicals from the bacterial metabolism of QdNOs, which cause oxidative damage in bacteria under anaerobic conditions.
Collapse
Affiliation(s)
- Fanfan Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Guyue Cheng
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China; Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Menghong Dai
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| |
Collapse
|