1
|
Guan X, Jia D, Liu X, Ding C, Guo J, Yao M, Zhang Z, Zhou M, Sun J. Combined influence of the nanoplastics and polycyclic aromatic hydrocarbons exposure on microbial community in seawater environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173772. [PMID: 38871313 DOI: 10.1016/j.scitotenv.2024.173772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Nanoplastics (NPs) and polycyclic aromatic hydrocarbons (PAHs) are recognized as persistent organic pollutant (POPs) with demonstrated physiological toxicity. When present in aquatic environments, the two pollutants could combine with each other, resulting in cumulative toxicity to organisms. However, the combined impact of NPs and PAHs on microorganisms in seawater is not well understood. In this study, we conducted an exposure experiment to investigate the individual and synergistic effects of NPs and PAHs on the composition, biodiversity, co-occurrence networks of microbial communities in seawater. Exposure of individuals to PAHs led to a reduction in microbial community richness, but an increase in the relative abundance of species linked to PAHs degradation. These PAHs-degradation bacteria acting as keystone species, maintained a microbial network complexity similar to that of the control treatment. Exposure to individual NPs resulted in a reduction in the complexity of microbial networks. Furthermore, when PAHs and NPs were simultaneously present, the toxic effect of NPs hindered the presence of keystone species involved in PAHs degradation, subsequently limiting the degradation of PAHs by marine microorganisms, resulting in a decrease in community diversity and symbiotic network complexity. This situation potentially poses a heightened threat to the ecological stability of marine ecosystems. Our work strengthened the understanding of the combined impact of NPs and PAHs on microorganisms in seawater.
Collapse
Affiliation(s)
- Xin Guan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Dai Jia
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China.
| | - Xinyu Liu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Changling Ding
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China; Institute for Advanced Marine Research, China University of Geosciences (Wuhan), Guangzhou, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
| | - Jinfei Guo
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Min Yao
- Jiangsu Hydrology and Water Resources Survey Bureau, Nanjing, China
| | - Zhan Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxi Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China; Institute for Advanced Marine Research, China University of Geosciences (Wuhan), Guangzhou, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
2
|
Fu Q, Hu T, Yang Y, Zhao M. Transcriptome analysis reveals phenanthrene degradation strategy of Pseudomonas stutzeri LH-42. 3 Biotech 2023; 13:65. [PMID: 36718409 PMCID: PMC9883372 DOI: 10.1007/s13205-023-03473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
Toxic polycyclic aromatic hydrocarbons (PAHs) are often released into the environment during the combustion and processing of fossil fuels and are capable of causing significant pollution to people and the environment. One of the representative substances of PAHs is phenanthrene, which is often studied as a model compound for PAHs treatment. In this study, we compared the results of transcriptome analysis of Pseudomonas stutzeri LH-42 in two different culture conditions under phenanthrene-induced culture (test group) and glucose-induced culture (control group), and analysed the key enzymatic mechanisms of Pseudomonas stutzeri LH-42 in the biodegradation of phenanthrene. In our experiments, the transcriptome results showed that a total of 380 genes were more than twofold differentially expressed in the test group, of which 187 genes were significantly up-regulated in expression under Phenanthrene induction. Among the 380 differentially expressed genes, 90 genes were involved in Phenanthrene biodegradation, mainly including genes involved in biometabolism, cellular chemotaxis, substrate transport, signal induction and other related processes. Based on the transcriptome sequence analysis of Pseudomonas stutzeri LH-42 at the time of phenanthrene induction, a total of 25 dioxygenase genes were identified, and the related genes were mainly concentrated in two relatively concentrated clusters of PAHs biodegradation genes. The transcriptome analysis resulted in a complete set of enzyme genes related to the phenanthrene biodegradation pathway. The analysis of key enzymes led to the inference of a possible phenanthrene biodegradation pathway: the salicylic acid degradation pathway. The results of this study provide a theoretical basis for in situ remediation of PAHs-contaminated environments using Pseudomonas stutzeri LH-42. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03473-7.
Collapse
Affiliation(s)
- Qiang Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Tingting Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Yu Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Mengshi Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| |
Collapse
|
3
|
Metagenomic and Metatranscriptomic Responses of Chemical Dispersant Application during a Marine Dilbit Spill. Appl Environ Microbiol 2022; 88:e0215121. [PMID: 35020455 DOI: 10.1128/aem.02151-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global increase in marine transportation of dilbit (diluted bitumen) can increase the risk of spills, and the application of chemical dispersants remains a common response practice in spill events. To reliably evaluate dispersant effects on dilbit biodegradation over time, we set large-scale (1500 mL) microcosms without nutrients addition using low dilbit concentration (30 ppm). Shotgun metagenomics and metatranscriptomics were deployed to investigate microbial community responses to naturally and chemically dispersed dilbit. We found that the large-scale microcosms could produce more reproducible community trajectories than small-scale (250 mL) ones based on the 16S rRNA gene amplicon sequencing. In the early-stage large-scale microcosms, multiple genera were involved into the biodegradation of dilbit, while dispersant addition enriched primarily Alteromonas and competed for the utilization of dilbit, causing depressed degradation of aromatics. The metatranscriptomic based Metagenome Assembled Genomes (MAG) further elucidated early-stage microbial antioxidation mechanism, which showed dispersant addition triggered the increased expression of the antioxidation process genes of Alteromonas species. Differently, in the late stage, the microbial communities showed high diversity and richness and similar compositions and metabolic functions regardless of dispersant addition, indicating the biotransformation of remaining compounds can occur within the post-oil communities. These findings can guide future microcosm studies and the application of chemical dispersants for responding to a marine dilbit spill. Importance In this study, we employed microcosms to study the effects of marine dilbit spill and dispersant application on microbial community dynamics over time. We evaluated the impacts of microcosm scale and found that increasing the scale is beneficial for reducing community stochasticity, especially in the late stage of biodegradation. We observed that dispersant application suppressed aromatics biodegradation in the early stage (6 days) whereas exerting insignificant effects in the late stage (50 days), from both substances removal and metagenomic/metatranscriptomic perspectives. We further found that Alteromonas species are vital for the early-stage chemically dispersed oil biodegradation, and clarified their degradation and antioxidation mechanisms. The findings would help to better understand microcosm studies and microbial roles for biodegrading dilbit and chemically dispersed dilbit, and suggest that dispersant evaluation in large-scale systems and even through field trails would be more realistic after marine oil spill response.
Collapse
|
4
|
Hazaimeh MD, Ahmed ES. Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54238-54259. [PMID: 34387817 DOI: 10.1007/s11356-021-15598-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The marine environment is often affected by petroleum hydrocarbon pollution due to industrial activities and petroleum accidents. This pollution has recalcitrant and persistent compounds that pose a high risk to the ecological system and human health. For this reason, the world claims to seek to clean up these pollutants. Bioremediation is an attractive approach for removing petroleum pollution. It is considered a low-cost and highly effective approach with fewer side effects compared to chemical and physical techniques. This depends on the metabolic capability of microorganisms involved in the degradation of hydrocarbons through enzymatic reactions. Bioremediation activities mostly depend on environmental conditions such as temperature, pH, salinity, pressure, and nutrition availability. Understanding the effects of environmental conditions on microbial hydrocarbon degraders and microbial interactions with hydrocarbon compounds could be assessed for the successful degradation of petroleum pollution. The current review provides a critical view of petroleum pollution in seawater, the bioavailability of petroleum compounds, the contribution of microorganisms in petroleum degradation, and the mechanisms of degradation under aerobic and anaerobic conditions. We consider different biodegradation approaches such as biostimulation, bioaugmentation, and phytoremediation.
Collapse
Affiliation(s)
- Mohammad Daher Hazaimeh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia.
| | - Enas S Ahmed
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Sun X, Chu L, Mercando E, Romero I, Hollander D, Kostka JE. Dispersant Enhances Hydrocarbon Degradation and Alters the Structure of Metabolically Active Microbial Communities in Shallow Seawater From the Northeastern Gulf of Mexico. Front Microbiol 2019; 10:2387. [PMID: 31749769 PMCID: PMC6842959 DOI: 10.3389/fmicb.2019.02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
Dispersant application is a primary emergency oil spill response strategy and yet the efficacy and unintended consequences of this approach in marine ecosystems remain controversial. To address these uncertainties, ex situ incubations were conducted to quantify the impact of dispersant on petroleum hydrocarbon (PHC) biodegradation rates and microbial community structure at as close as realistically possible to approximated in situ conditions [2 ppm v/v oil with or without dispersant, at a dispersant to oil ratio (DOR) of 1:15] in surface seawater. Biodegradation rates were not substantially affected by dispersant application at low mixing conditions, while under completely dispersed conditions, biodegradation was substantially enhanced, decreasing the overall half-life of total PHC compounds from 15.4 to 8.8 days. While microbial respiration and growth were not substantially altered by dispersant treatment, RNA analysis revealed that dispersant application resulted in pronounced changes to the composition of metabolically active microbial communities, and the abundance of nitrogen-fixing prokaryotes, as determined by qPCR of nitrogenase (nifH) genes, showed a large increase. While the Gammaproteobacteria were enriched in all treatments, the Betaproteobacteria and different families of Alphaproteobacteria predominated in the oil and dispersant treatment, respectively. Results show that mixing conditions regulate the efficacy of dispersant application in an oil slick, and the quantitative increase in the nitrogen-fixing microbial community indicates a selection pressure for nitrogen fixation in response to a readily biodegradable, nitrogen-poor substrate.
Collapse
Affiliation(s)
- Xiaoxu Sun
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, China
| | - Lena Chu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Elisa Mercando
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Isabel Romero
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| | - David Hollander
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| | - Joel E Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
6
|
Pinto M, Langer TM, Hüffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One 2019; 14:e0217165. [PMID: 31166981 PMCID: PMC6550384 DOI: 10.1371/journal.pone.0217165] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Once in the ocean, plastics are rapidly colonized by complex microbial communities. Factors affecting the development and composition of these communities are still poorly understood. Additionally, whether there are plastic-type specific communities developing on different plastics remains enigmatic. We determined the development and succession of bacterial communities on different plastics under ambient and dim light conditions in the coastal Northern Adriatic over the course of two months using scanning electron microscopy and 16S rRNA gene analyses. Plastics used were low- and high-density polyethylene (LDPE and HDPE, respectively), polypropylene (PP) and polyvinyl chloride with two typical additives (PVC DEHP and PVC DINP). The bacterial communities developing on the plastics clustered in two groups; one group was found on PVC and the other group on all the other plastics and on glass, which was used as an inert control. Specific bacterial taxa were found on specific surfaces in essentially all stages of biofilm development and in both ambient and dim light conditions. Differences in bacterial community composition between the different plastics and light exposures were stronger after an incubation period of one week than at the later stages of the incubation. Under both ambient and dim light conditions, one part of the bacterial community was common on all plastic types, especially in later stages of the biofilm development, with families such as Flavobacteriaceae, Rhodobacteraceae, Planctomycetaceae and Phyllobacteriaceae presenting relatively high relative abundances on all surfaces. Another part of the bacterial community was plastic-type specific. The plastic-type specific fraction was variable among the different plastic types and was more abundant after one week of incubation than at later stages of the succession.
Collapse
Affiliation(s)
- Maria Pinto
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
| | - Teresa M. Langer
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Thorsten Hüffer
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thilo Hofmann
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
7
|
Tiralerdpanich P, Sonthiphand P, Luepromchai E, Pinyakong O, Pokethitiyook P. Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. MARINE POLLUTION BULLETIN 2018; 133:595-605. [PMID: 30041354 DOI: 10.1016/j.marpolbul.2018.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Hydrocarbon contamination is a serious problem that degrades the quality of mangrove ecosystems, and bioremediation using autochthonous bacteria is a promising technology to recover an impacted environment. This research investigates the biodegradation rates of diesel, hexadecane and phenanthrene, by conducting a microcosm study and survey of the autochthonous microbial community in contaminated mangrove sediment, using an Illumina MiSeq platform. The biodegradation rates of diesel, hexadecane and phenanthrene were 82, 86 and 8 mg kg-1 sediment day-1, respectively. The removal efficiencies of hexadecane and phenanthrene were >99%, whereas the removal efficiency of diesel was 88%. A 16S rRNA gene amplicon sequence analysis revealed that the major bacterial assemblages detected were Gammaproteobacteria, Deltaproteobacteria, Alphaproteobacteria. The bacterial compositions were relatively constant, while reductions of the supplemented hydrocarbons were observed. The results imply that the autochthonous microorganisms in the mangrove sediment were responsible for the degradation of the respective hydrocarbons. Diesel-, hexadecane- and phenanthrene-degrading bacteria, namely Bacillus sp., Pseudomonas sp., Acinetobacter sp. and Staphylococcus sp., were also isolated from the mangrove sediment. The mangrove sediment provides a potential resource of effective hydrocarbon-degrading bacteria that can be used as an inoculum or further developed as a ready-to-use microbial consortium for the purpose of bioremediation.
Collapse
Affiliation(s)
- Parichaya Tiralerdpanich
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Ekawan Luepromchai
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Omrani R, Spini G, Puglisi E, Saidane D. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation. Biodegradation 2018; 29:187-209. [DOI: 10.1007/s10532-018-9823-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/23/2018] [Indexed: 02/06/2023]
|