1
|
Besze BZ, Borsodi AK, Megyes M, Zsigmond T, Horel Á. Changes in the taxonomic composition of soil bacterial communities under different inter-row tillage managements in a sloping vineyard of the Balaton Uplands (Hungary). Biol Futur 2024; 75:327-338. [PMID: 39073547 DOI: 10.1007/s42977-024-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
The common grape (Vitis vinifera L.) has been cultivated for thousands of years. Nowadays, it is cultivated using a variety of tillage practices that affect the structure of the soil microbial communities and thus the health of the vine. The aim of this study was to explore and compare the effects of tillage (shallow tillage with bare soil) and no-tillage (perennial grass cover) practices on soil physical and chemical properties and soil bacterial community diversities in a small catchment. Soil samples were taken in July and October 2020 at different slope positions of two vineyards exposed to erosion. The two sampling sites were separated by the agricultural inter-row management type: tilled and no-tilled slopes. The taxonomic diversity of bacterial communities was determined using 16S rRNA gene-based amplicon sequencing method on Illumina MiSeq platform. Based on the examined soil properties, the sampling areas were separated from each other according to the positions of the upper and lower slopes and the sampling times. Both the tilled and no-tilled soil samples were dominated by sequences assigned to phyla Pseudomonadota, Acidobacteriota, Bacteroidota, Verrucomicrobiota, Actinobacteriota, and Gemmatimonadota. The results showed that tillage had no significant effect compared to the no-tilled samples in the studied area. Water runoff and seasonally changed soil physical and chemical properties affected mainly the bacterial community structures.
Collapse
Affiliation(s)
- Balázs Zoltán Besze
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| | - Melinda Megyes
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Tibor Zsigmond
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Ruszti ut 2-4, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Ágota Horel
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Ruszti ut 2-4, Budapest, 1022, Hungary
| |
Collapse
|
2
|
Ding M, Dai H, He Y, Liang T, Zhai Z, Zhang S, Hu B, Cai H, Dai B, Xu Y, Zhang Y. Continuous cropping system altered soil microbial communities and nutrient cycles. Front Microbiol 2024; 15:1374550. [PMID: 38680924 PMCID: PMC11045989 DOI: 10.3389/fmicb.2024.1374550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Understanding the response of microbial communities and their potential functions is essential for sustainability of agroecosystems under long-term continuous cropping. However, limited research has focused on investigating the interaction between soil physicochemical factors and microbial community dynamics in agroecosystems under long-term continuous cropping. This study probed into the physicochemical properties, metabolites, and microbial diversity of tobacco rhizosphere soils cropped continuously for 0, 5, and 20 years. The relative abundance of bacterial genera associated with nutrient cycling (e.g., Sphingomonas) increased while potential plant pathogenic fungi and beneficial microorganisms showed synergistic increases with the duration of continuous cropping. Variations in soil pH, alkeline nitrogen (AN) content, and soil organic carbon (SOC) content drove the shifts in soil microbial composition. Metabolites such as palmitic acid, 3-hydroxypropionic acid, stearic acid, and hippuric acid may play a key role in soil acidification. Those results enhance our ability to predict shifts in soil microbial community structure associated with anthropogenic continuous cropping, which can have long-term implications for crop production.
Collapse
Affiliation(s)
- Mengjiao Ding
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
- College of Tobacco Science of Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Tobacco Quality, College of Tobacco Science, Guizhou University, Guiyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huaxin Dai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yi He
- Guizhou Tobacco Company Bijie Region Tobacco Company, Bijie, China
| | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhen Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Shixiang Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Heqing Cai
- Guizhou Tobacco Company Bijie Region Tobacco Company, Bijie, China
| | - Bin Dai
- Guizhou Tobacco Company Bijie Region Tobacco Company, Bijie, China
| | - Yadong Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanling Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
3
|
Rossi F, Duchaine C, Tignat-Perrier R, Joly M, Larose C, Dommergue A, Turgeon N, Veillette M, Sellegri K, Baray JL, Amato P. Temporal variations of antimicrobial resistance genes in aerosols: A one-year monitoring at the puy de Dôme summit (Central France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169567. [PMID: 38145686 DOI: 10.1016/j.scitotenv.2023.169567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The recent characterization of antibiotic resistance genes (ARGs) in clouds evidenced that the atmosphere actively partakes in the global spreading of antibiotic resistance worldwide. Indeed, the outdoor atmosphere continuously receives large quantities of particles of biological origins, emitted from both anthropogenic or natural sources at the near Earth's surface. Nonetheless, our understanding of the composition of the atmospheric resistome, especially at mid-altitude (i.e. above 1000 m a.s.l.), remains largely limited. The atmosphere is vast and highly dynamic, so that the diversity and abundance of ARGs are expected to fluctuate both spatially and temporally. In this work, the abundance and diversity of ARGs were assessed in atmospheric aerosol samples collected weekly between July 2016 and August 2017 at the mountain site of puy de Dôme (1465 m a.s.l., central France). Our results evidence the presence of 33 different subtypes of ARGs in atmospheric aerosols, out of 34 assessed, whose total concentration fluctuated seasonally from 59 to 1.1 × 105 copies m-3 of air. These were heavily dominated by genes from the quinolone resistance family, notably the qepA gene encoding efflux pump mechanisms, which represented >95 % of total ARGs concentration. Its abundance positively correlated with that of bacteria affiliated with the genera Kineococcus, Neorhizobium, Devosia or Massilia, ubiquitous in soils. This, along with the high abundance of Sphingomonas species, points toward a large contribution of natural sources to the airborne ARGs. Nonetheless, the increased contribution of macrolide resistance (notably the erm35 gene) during winter suggests a sporadic diffusion of ARGs from human activities. Our observations depict the atmosphere as an important vector of ARGs from terrestrial sources. Therefore, monitoring ARGs in airborne microorganisms appears necessary to fully understand the dynamics of antimicrobial resistances in the environment and mitigate the threats they may represent.
Collapse
Affiliation(s)
- Florent Rossi
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Caroline Duchaine
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada; Canada Research Chair on Bioaerosols, Canada.
| | - Romie Tignat-Perrier
- Laboratoire Ampère, École Centrale de Lyon, CNRS, Université de Lyon, Ecully, France; Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP, Grenoble, France
| | - Muriel Joly
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Larose
- Laboratoire Ampère, École Centrale de Lyon, CNRS, Université de Lyon, Ecully, France
| | - Aurélien Dommergue
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP, Grenoble, France
| | - Nathalie Turgeon
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Marc Veillette
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Karine Sellegri
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie physique, UMR 6016, Clermont-Ferrand, France
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de physique du Globe de Clermont-Ferrand, UAR 833, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie physique, UMR 6016, Clermont-Ferrand, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
4
|
Afkairin A, Dixon MM, Buchanan C, Ippolito JA, Manter DK, Davis JG, Vivanco JM. Harnessing Phosphorous (P) Fertilizer-Insensitive Bacteria to Enhance Rhizosphere P Bioavailability in Legumes. Microorganisms 2024; 12:353. [PMID: 38399758 PMCID: PMC10892362 DOI: 10.3390/microorganisms12020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphorous (P) is widely used in agriculture; yet, P fertilizers are a nonrenewable resource. Thus, mechanisms to improve soil P bioavailability need to be found. Legumes are efficient in P acquisition and, therefore, could be used to develop new technologies to improve soil P bioavailability. Here, we studied different species and varieties of legumes and their rhizosphere microbiome responses to low-P stress. Some varieties of common beans, cowpeas, and peas displayed a similar biomass with and without P fertilization. The rhizosphere microbiome of those varieties grown without P was composed of unique microbes displaying different levels of P solubilization and mineralization. When those varieties were amended with P, some of the microbes involved in P solubilization and mineralization decreased in abundance, but other microbes were insensitive to P fertilization. The microbes that decreased in abundance upon P fertilization belonged to groups that are commonly used as biofertilizers such as Pseudomonas and Azospirillum. The microbes that were not affected by P fertilization constitute unique species involved in P mineralization such as Arenimonas daejeonensis, Hyphomicrobium hollandicum, Paenibacillus oenotherae, and Microlunatus speluncae. These P-insensitive microbes could be used to optimize P utilization and drive future sustainable agricultural practices to reduce human dependency on a nonrenewable resource.
Collapse
Affiliation(s)
- Antisar Afkairin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA; (A.A.); (M.M.D.)
| | - Mary M. Dixon
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA; (A.A.); (M.M.D.)
| | - Cassidy Buchanan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.B.); (J.A.I.)
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.B.); (J.A.I.)
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel K. Manter
- Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Jessica G. Davis
- Agricultural Experiment Station, Colorado State University, Fort Collins, CO 80523, USA
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA; (A.A.); (M.M.D.)
| |
Collapse
|
5
|
de Moura GGD, de Barros AV, Machado F, da Silva Dambroz CM, Glienke C, Petters-Vandresen DAL, Alves E, Schwan RF, Pasqual M, Dória J. The Friend Within: Endophytic Bacteria as a Tool for Sustainability in Strawberry Crops. Microorganisms 2022; 10:microorganisms10122341. [PMID: 36557594 PMCID: PMC9780916 DOI: 10.3390/microorganisms10122341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Strawberry (Fragaria x ananassa, Duch.) is an important crop worldwide. However, since it is a highly demanding crop in terms of the chemical conditions of the substrate, a large part of strawberry production implies the application of large amounts of fertilizers in the production fields. This practice can cause environmental problems, in addition to increases in the fruit's production costs. In this context, applying plant growth-promoting bacteria in production fields can be an essential strategy, especially thanks to their ability to stimulate plant growth via different mechanisms. Therefore, this study aimed to test in vitro and in vivo the potential of bacteria isolated from strawberry leaves and roots to directly promote plant growth. The isolates were tested in vitro for their ability to produce auxins, solubilize phosphate and fix nitrogen. Isolates selected in vitro were tested on strawberry plants to promote plant growth and increase the accumulation of nitrogen and phosphorus in the leaves. The tested isolates showed an effect on plant growth according to biometric parameters. Among the tested isolates, more expressive results for the studied variables were observed with the inoculation of the isolate MET12M2, belonging to the species Brevibacillus fluminis. In general, bacterial inoculation induced strain-dependent effects on strawberry growth. In vitro and in vivo assays showed the potential use of the B. fluminis MET12M2 isolate as a growth promoter for strawberries.
Collapse
Affiliation(s)
| | | | - Franklin Machado
- Phytopathology Department, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | | | - Chirlei Glienke
- Genetic Department, Federal University of Paraná, Curitiba 81531-980, Brazil
| | | | - Eduardo Alves
- Phytopathology Department, Federal University of Lavras, Lavras 37200-900, Brazil
| | | | - Moacir Pasqual
- Agriculture Department, Federal University of Lavras, Lavras 37200-900, Brazil
| | - Joyce Dória
- Agriculture Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Correspondence:
| |
Collapse
|
6
|
Sun N, Gu Y, Jiang G, Wang Y, Wang P, Song W, Ma P, Duan Y, Jiao Z. Bacterial Communities in the Endophyte and Rhizosphere of White Radish ( Raphanus sativus) in Different Compartments and Growth Conditions. Front Microbiol 2022; 13:900779. [PMID: 35847086 PMCID: PMC9277120 DOI: 10.3389/fmicb.2022.900779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Endophyte resources have important research value in multiresistance breeding, ecological protection, germicide development, and other fields. In this study, high-throughput sequencing (Illumina-MiSeq) technology was employed to analyse the diversity and community composition of white radish (Raphanus sativus) endophytes and rhizosphere bacteria in different compartments and cultivation conditions, including greenhouse and open field cultivation, at both the phylum and genus levels. Alpha diversity index analysis showed that the bacterial richness and diversity values of rhizosphere bacteria were higher than those of endophytes in different compartments. NMDS analysis and microbial co-occurrence network analysis showed that apart from the similarity in the endophytic bacterial composition of the leaf and root endosphere, the endophytic bacterial composition in flesh and epidermis of radish were also more similar. The dominant endophytic bacteria in white radish were Proteobacteria, Bacteroidetes, and Actinomycetes at the phylum level. We analyzed the effects of different ecological compartments and two cultivation environments on radish microorganisms, and found that ecological compartments played an important role, which was related to the mechanism of microbial assembly in plants. The same facility cultivation can also improve the diversity of radish microorganisms in different ecological compartments, and change the biomarkers that play a major role in rhizosphere microorganisms and endophytes of radish. Bacteria plays an important role in the process of plant growth, and the study of endophytes enriches the understanding of microbial diversity in white radish, which helps to provide insight into the ecological function and interaction mechanisms of plants and microorganisms.
Collapse
Affiliation(s)
- Nan Sun
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Yizhu Gu
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Guoxia Jiang
- Henan Pingdingshan Academy of Agricultural Sciences, Pingdingshan, China
| | - Yuxin Wang
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Pingzhi Wang
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Weitang Song
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing, China
| | - Peifang Ma
- Henan Pingdingshan Academy of Agricultural Sciences, Pingdingshan, China
| | - Yabin Duan
- Henan Pingdingshan Academy of Agricultural Sciences, Pingdingshan, China
| | - Ziyuan Jiao
- Henan Pingdingshan Academy of Agricultural Sciences, Pingdingshan, China
| |
Collapse
|
7
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
8
|
The Xylella fastidiosa-Resistant Olive Cultivar "Leccino" Has Stable Endophytic Microbiota during the Olive Quick Decline Syndrome (OQDS). Pathogens 2019; 9:pathogens9010035. [PMID: 31906093 PMCID: PMC7168594 DOI: 10.3390/pathogens9010035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
Xylella fastidiosa is a highly virulent pathogen that causes Olive Quick Decline Syndrome (OQDS), which is currently devastating olive plantations in the Salento region (Apulia, Southern Italy). We explored the microbiome associated with X. fastidiosa-infected (Xf-infected) and -uninfected (Xf-uninfected) olive trees in Salento, to assess the level of dysbiosis and to get first insights into the potential role of microbial endophytes in protecting the host from the disease. The resistant cultivar “Leccino” was compared to the susceptible cultivar “Cellina di Nardò”, in order to identify microbial taxa and parameters potentially involved in resistance mechanisms. Metabarcoding of 16S rRNA genes and fungal ITS2 was used to characterize both total and endophytic microbiota in olive branches and leaves. “Cellina di Nardò” showed a drastic dysbiosis after X. fastidiosa infection, while “Leccino” (both infected and uninfected) maintained a similar microbiota. The genus Pseudomonas dominated all “Leccino” and Xf-uninfected “Cellina di Nardò” trees, whereas Ammoniphilus prevailed in Xf-infected “Cellina di Nardò”. Diversity of microbiota in Xf-uninfected “Leccino” was higher than in Xf-uninfected “Cellina di Nardò”. Several bacterial taxa specifically associated with “Leccino” showed potential interactions with X. fastidiosa. The maintenance of a healthy microbiota with higher diversity and the presence of cultivar-specific microbes might support the resistance of “Leccino” to X. fastidiosa. Such beneficial bacteria might be isolated in the future for biological treatment of the OQDS.
Collapse
|