1
|
Santos RFB, Zanella J, Ferreira ACV, Couto MV, Dias HM, Abe HA, Ramos FM, Paixão PEG, Martins ML, Fujimoto RY, Honorato CA. The growth performance and parasite load of angelfish juveniles Pterophyllum scalare kept at different stocking densities in two rearing systems. BRAZ J BIOL 2024; 84:e280128. [PMID: 38836801 DOI: 10.1590/1519-6984.280128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 06/06/2024] Open
Abstract
This study evaluated the growth performance and parasite load of angelfish juveniles Pterophyllum scalare kept at different stocking densities using two rearing systems. The experiment was conducted in a factorial design (4x2) with four stocking densities (0.1, 0.4, 0.7, and 1.0 g/L), two type of aquarium tanks (glass and ceramic aquariums), and four replicates. The experiment lasted 60 days using 148 juvenile fish (3.05 ± 0.09 g) randomly placed in 32 aquariums (50 L) equipped with filters and aeration. All fish received two meals a day ad libitum (8:00 and 16:00). Water quality parameters such as temperature, dissolved oxygen, pH, and total ammonia were measured. At the end of the experiment, all fish were measured and weighed to determine growth performance and then subjected to parasitological analysis. The data were analyzed with a two-way ANOVA with post-hoc Tukey test (p<0.05). No effects on growth performance at different stocking densities were observed. However, there was an increase in Capillaria pterophylli infestation in the high stocking density within ceramic aquariums. Thus, this study recommends the use of 1.0 g/L for the intensive aquaculture system of freshwater angelfish, and applying cleaning management to avoid parasite infestation, particularly in ceramic aquariums.
Collapse
Affiliation(s)
- R F B Santos
- Yepist - Alimentos para Organismos Aquáticos, Recife, PE, Brasil
| | - J Zanella
- Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brasil
| | - A C V Ferreira
- Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brasil
| | - M V Couto
- Instituto Federal de Educação, Ciência e Tecnologia do Pará - IFPA, Cametá, PA, Brasil
| | - H M Dias
- Universidade Tiradentes, Programa de Pós-graduação em Saúde e Ambiente, Aracaju, SE, Brasil
| | - H A Abe
- Universidade do Estado da Bahia - UNEB, Valença, BA, Brasil
| | - F M Ramos
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA, Valença, BA, Brasil
| | - P E G Paixão
- Universidade Tiradentes, Programa de Pós-graduação em Saúde e Ambiente, Aracaju, SE, Brasil
| | - M L Martins
- Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brasil
| | - R Y Fujimoto
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Macapá, AP, Brasil
| | - C A Honorato
- Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brasil
| |
Collapse
|
2
|
Wang Z, Cui T, Wang Q. Optimization of degradation conditions and analysis of degradation mechanism for nitrite by Bacillus aryabhattai 47. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171096. [PMID: 38387569 DOI: 10.1016/j.scitotenv.2024.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Excessive nitrite levels cause significant damage to aquaculture, making it crucial to explore green and reliable nitrite removal technologies. In this study, A Bacillus aryabhattai (designated as the strain 47) isolated from aquaculture wastewater was used as the experimental strain. The nitrite degradation conditions of the strain 47 were optimized, and the optimal conditions are: glucose was 12.74 g/L, fermented special soybean meal was 21.27 g/L, MgCl2 369 mg/L, pH 7.0, incubated at 30 °C with the inoculum size of 2 % and the rotation speed of 170 rpm. Under the optimal conditions, the nitrite concentration of the culture solution was 200 mg/L, and the nitrite removal rate reached 91.4 %. Meanwhile, the mechanism by which Mg2+ enhanced the nitrite degradation ability of the strain 47 was investigated by transcriptomics. An operon structure directed cellular trafficking of Mg2+, and then, the Mg2+-mediated catalytic reaction of multiple enzymes enhanced and improved cellular metabolic processes (e.g. the transport and metabolism of nitrite, central carbohydrate metabolism oxidative phosphorylation). At the same time, with the progress of cell metabolism, cells secreted a series of enzymes related to nitrite transport and metabolism to promote the metabolism of nitrite. And the process of the assimilated nitrate reduction pathway of nitrite degradation in the strain 47 was elaborated at the transcriptome level. This study provided a new insight into nitrite treatment mediated by microbial organisms.
Collapse
Affiliation(s)
- Zhenhao Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Qiang Wang
- Guangdong Yuzanchen Biotechnology Co., Ltd, Jiangmen 529100, PR China
| |
Collapse
|
3
|
Zhu X, Yang P, Xiong G, Wei H, Zhang L, Wang Z, Ning K. Microbial biogeochemical cycling reveals the sustainability of the rice-crayfish co-culture model. iScience 2023; 26:106769. [PMID: 37234090 PMCID: PMC10206492 DOI: 10.1016/j.isci.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/08/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Aquaculture has great potential in nourishing the global growing population, while such staggering yields are coupled with environmental pollution. Rice-crayfish co-culture models (RCFP) have been widely adopted in China due to their eco-friendliness. However, little is known about RCFP's microbiome pattern, which hinders our understanding of its sustainability. This study has conducted metagenomic analysis across aquaculture models and habitats, which revealed aquaculture model-specific biogeochemical cycling pattern (e.g., nitrogen (N), sulfur (S), and carbon (C)): RCFP is advantageous in N-assimilation, N-contamination, and S-pollutants removal, while non-RCFP features N denitrification process and higher S metabolism ability, producing several hazardous pollutants in non-RCFP (e.g., nitric oxide, nitrogen monoxide, and sulfide). Moreover, RCFP has greater capacity for carbohydrate enzyme metabolism compared with non-RCFP in environmental habitats, but not in crayfish gut. Collectively, RCFP plays an indispensable role in balancing aquaculture productivity and environmental protection, which might be applied to the blue transformation of aquaculture.
Collapse
Affiliation(s)
- Xue Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guangzhou Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
4
|
Cao J, Zhang Y, Dai G, Cui K, Wu X, Qin F, Xu J, Dong F, Pan X, Zheng Y. The long-acting herbicide mesosulfuron-methyl inhibits soil microbial community assembly mediating nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130293. [PMID: 36444049 DOI: 10.1016/j.jhazmat.2022.130293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Mesosulfuron-methyl is a widely used herbicide in wheat fields. We previously reported that mesosulfuron-methyl alters the bacterial/fungal community structure in experimental indoor microcosms, ultimately affecting NO3--N and NH4+-N contents in soil nitrogen (N) cycling. However, how mesosulfuron-methyl application alter soil N cycling by changing microbial community assembly is unknown. Here, we designed an outdoor experiment comprising 2-month periods to investigate changes in soil N-cycle functional genes and structural shifts in the microbial community assembly in response to mesosulfuron-methyl applied at 11.25 and 112.5 g a.i. hm-2. Results showed that high mesosulfuron-methyl input significantly decreased AOA amoA and nirK abundances within the initial 15 days, but increased AOB amoA on day 60. The nifH abundance displayed a stimulation-inhibition trend. Moreover, high mesosulfuron-methyl input decreased the network's complexity, and newly formed multiple network modules exhibited strong negative associations with nifH, AOB amoA, nirK and nirS. Further structural equation model demonstrated that mesosulfuron-methyl did reveal strong direct inhibition of nirK, and it indirectly affected nirK by changing nifH abundance and Planomicrobium. Thus mesosulfuron-methyl perturbs N-cycling processes by reshaping bacterial community assembly. Taken together, our study provides theoretical support for determining the microbiological mechanism by which mesosulfuron-methyl affects soil N cycling.
Collapse
Affiliation(s)
- Junli Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, People's Republic of China
| | - Ying Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China; Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, People's Republic of China
| | - Gaochen Dai
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China; Key Laboratory of Mountain Environment, Guizhou normal University, Guiyang 550025, People's Republic of China
| | - Kai Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China.
| | - Fanxin Qin
- Key Laboratory of Mountain Environment, Guizhou normal University, Guiyang 550025, People's Republic of China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Xinglu Pan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
Guan W, Li K, Li K. Bacterial communities in co-cultured fish intestines and rice field soil irrigated with aquaculture wastewater. AMB Express 2022; 12:132. [PMID: 36272009 DOI: 10.1186/s13568-022-01475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
In some regions, integrated rice-fish farms have been developed to balance the needs of aquaculture wastewater discharge and rice field irrigation. In this type of aqua-agriculture system, soil is irrigated with aquaculture wastewater, and intestinal bacteria in cultured fish species likely impact soil bacteria through irrigation. However, little is known about the relationship between soil bacteria and intestinal bacteria in some carp species commonly co-cultured in some Asian regions. Therefore, we co-cultured five carp species in aquaculture ponds and used the aquaculture wastewater to irrigate rice fields for over 5 years, and then compared carp intestinal bacterial communities with rice field soil bacterial communities. The results from analysis of similarity and SourceTracker analysis showed that a low similarity (R = 0.7908, P = 0.001) and contribution (an average of 9.9% of bacterial genera) of intestinal bacteria to soil bacterial communities although 77.5% of soil bacterial genera were shared by intestinal bacteria. Our results also indicated that intestinal bacteria in the numerically dominant fish species in the co-culture system do not necessarily impact soil bacteria more significantly than those of less abundant carp species, and that intestinal bacterial communities in one single fish species may impact certain soil bacterial phyla more significantly than others. Our results provide a better understanding of the impact of aquaculture wastewater on rice fields and will be helpful for the development of this type of aqua-agriculture system.
Collapse
Affiliation(s)
- Weibing Guan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kui Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
6
|
Xu H, Zhao D, Zeng J, Mao Z, Gu X, Wu QL. Evaluating the effects of aquaculture on the freshwater lake from the perspective of plankton communities: The diversity, co-occurrence patterns and their underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119741. [PMID: 35839971 DOI: 10.1016/j.envpol.2022.119741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture has significant impacts on freshwater lakes, but plankton communities, as key components of the microbial food web, are rarely considered when assessing the impacts of aquaculture. Revealing the dynamics of plankton communities, including bacterioplankton, phytoplankton and zooplankton, under anthropological disturbances is critical for predicting the freshwater ecosystem functioning in response to future environmental changes. In the present study, we examined the impacts of aquaculture on water quality, plankton diversity and the co-occurrence patterns within plankton metacommunities in a shallow freshwater lake. The study zones are influenced by the 20-year historical intensive aquaculture, but now they are undergoing either ecological aquaculture or ecological restoration. Our results showed that ecological aquaculture was more efficient in nitrogen removal than ecological restoration. Moreover, lower bacterioplankton diversity but higher phytoplankton and zooplankton diversity were found in the ecological aquaculture and ecological restoration zones compared to the control zone. The lower network connectivity of the plankton metacommunities in the ecological aquaculture and ecological restoration zones indicated the decreasing complexity of potential microbial food web, suggesting a possible lower resistance of the plankton metacommunities to future disturbance. Furthermore, plankton communities of different trophic levels were driven under distinct mechanisms. The bacterioplankton community was primarily affected by abiotic factors, whereas the phytoplankton and zooplankton communities were explained more by trophic interactions. These results revealed the impacts of aquaculture on the plankton communities and their potential interactions, thereby providing fundamental information for better understanding the impacts of aquaculture on freshwater ecosystem functioning.
Collapse
Affiliation(s)
- Huimin Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|