1
|
Dahl MB, Kreyling J, Petters S, Wang H, Mortensen MS, Maccario L, Sørensen SJ, Urich T, Weigel R. Warmer winters result in reshaping of the European beech forest soil microbiome (bacteria, archaea and fungi)-With potential implications for ecosystem functioning. Environ Microbiol 2023. [PMID: 36752534 DOI: 10.1111/1462-2920.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Sebastian Petters
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Martin Steen Mortensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Weigel
- Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
2
|
Li W, Lei X, Zhang R, Cao Q, Yang H, Zhang N, Liu S, Wang Y. Shifts in rhizosphere microbial communities in Oplopanax elatus Nakai are related to soil chemical properties under different growth conditions. Sci Rep 2022; 12:11485. [PMID: 35798802 PMCID: PMC9262954 DOI: 10.1038/s41598-022-15340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Plant growth environment plays an important role in shaping soil microbial communities. To understand the response of soil rhizosphere microbial communities in Oplopanax elatus Nakai plant to a changed growth conditions from natural habitation to cultivation after transplant. Here, a comparative study of soil chemical properties and microbial community using high-throughput sequencing was conducted under cultivated conditions (CT) and natural conditions (WT), in Changbai Mountain, Northeast of China. The results showed that rhizosphere soil in CT had higher pH and lower content of soil organic matter (SOM) and available nitrogen compared to WT. These changes influenced rhizosphere soil microbial communities, resulting in higher soil bacterial and fungi richness and diversity in CT soil, and increased the relative abundance of bacterial phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes and Patescibacteria, and the fungi phyla Mortierellomycota and Zoopagomycota, while decreased bacterial phyla Actinobacteria, WPS-2, Gemmatimonadetes, and Verrucomicrobia, and the fungi phyla Ascomycota, and Basidiomycota. Redundancy analysis analysis indicated soil pH and SOM were the primarily environmental drivers in shaping the rhizosphere soil microbial community in O. elatus under varied growth conditions. Therefore, more attention on soil nutrition management especially organic fertilizer inputs should be paid in O. elatus cultivation.
Collapse
Affiliation(s)
- Wanying Li
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Rui Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Qingjun Cao
- Jilin Academy of Agriculture Science, Changchun, 130033, People's Republic of China.
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Nanqi Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China. .,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China.
| |
Collapse
|