1
|
Li Q, Ji R, Zi H, Sun W, Zhang Y, Wu X, Long Y, Yang Y. Life history parameters of Ectropis grisescens (Lepidoptera: Geometridae) in different Wolbachia infection states. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1859-1866. [PMID: 39109809 DOI: 10.1093/jee/toae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 10/16/2024]
Abstract
Wolbachia, a prevalent intracellular symbiotic bacterium in insects, plays a significant role in insect biology. Ectropis grisescens (Warren; Lepidoptera: Geometridae) is a devastating chewing pest distributed in tea plantations throughout China. However, it is unclear how Wolbachia titers affect the fitness and reproduction of E. grisescens. In this study, the impacts of 3 different infection lines, naturally Wolbachia-infected, Wolbachia-uninfected, and Wolbachia transinfected, regarding the life history traits of E. grisescens, were evaluated using the age-stage, 2-sex life table. Wolbachia infection shortened preadult duration and preoviposition periods and increased the fecundity, net reproductive rate, and finite rate of increase. Meanwhile, population projection indicated that E. grisescens population size with Wolbachia infection can increase faster than without. These results indicate that Wolbachia plays a regulatory role in the fitness of E. grisescens. It is also noted that the life history parameters of E. grisescens may positively correlate with Wolbachia titers. These findings could aid in pest management in tea gardens.
Collapse
Affiliation(s)
- Qiangkun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ruijie Ji
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Huabin Zi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wanpeng Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yong Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xinyu Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Amini S, Fathipour Y, Hoffmann A, Mehrabadi M. Wolbachia affect female mate preference and offspring fitness in a parasitoid wasp. PEST MANAGEMENT SCIENCE 2024; 80:5432-5439. [PMID: 38934782 DOI: 10.1002/ps.8272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Wolbachia are widespread intracellular bacteria in insects that often have high rates of spread due to their impact on insect reproduction. These bacteria may also affect the mating behavior of their host with impacts on the fitness of host progeny. In this study, we investigated the impact of Wolbachia on a preference for mating with young or old males in the parasitoid wasp Habrobracon hebetor. RESULTS Our results showed that uninfected females from a tetracycline-treated line preferred to mate with young males, whereas Wolbachia-infected females had no preference. Time to mating was relatively shorter in the infected lines. Regardless of Wolbachia infection status, progeny resulting from matings with young males showed higher fitness than those from crosses with old males, and infected females crossed with infected young males showed the highest performance. CONCLUSION These results suggest an impact of Wolbachia on female mate preference and offspring fitness although it is unclear how this phenomenon increases Wolbachia transmission of infected wasps. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Amini
- Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | | | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
3
|
Kaur R, Meier CJ, McGraw EA, Hillyer JF, Bordenstein SR. The mechanism of cytoplasmic incompatibility is conserved in Wolbachia-infected Aedes aegypti mosquitoes deployed for arbovirus control. PLoS Biol 2024; 22:e3002573. [PMID: 38547237 PMCID: PMC11014437 DOI: 10.1371/journal.pbio.3002573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 03/01/2024] [Indexed: 04/13/2024] Open
Abstract
The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins, CifA and CifB, target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirm the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Cole J. Meier
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Elizabeth A. McGraw
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Pennsylvania State University, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Julian F. Hillyer
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Martins M, César CS, Cogni R. The effects of temperature on prevalence of facultative insect heritable symbionts across spatial and seasonal scales. Front Microbiol 2023; 14:1321341. [PMID: 38143870 PMCID: PMC10741647 DOI: 10.3389/fmicb.2023.1321341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Facultative inheritable endosymbionts are common and diverse in insects and are often found at intermediate frequencies in insect host populations. The literature assessing the relationship between environment and facultative endosymbiont frequency in natural host populations points to temperature as a major component shaping the interaction. However, a synthesis describing its patterns and mechanistic basis is lacking. This mini-review aims to bridge this gap by, following an evolutionary model, hypothesizing that temperature increases endosymbiont frequencies by modulating key phenotypes mediating the interaction. Field studies mainly present positive correlations between temperature and endosymbiont frequency at spatial and seasonal scales; and unexpectedly, temperature is predominantly negatively correlated with the key phenotypes. Higher temperatures generally reduce the efficiency of maternal transmission, reproductive parasitism, endosymbiont influence on host fitness and the ability to protect against natural enemies. From the endosymbiont perspective alone, higher temperatures reduce titer and both high and low temperatures modulate their ability to promote host physiological acclimation and behavior. It is necessary to promote research programs that integrate field and laboratory approaches to pinpoint which processes are responsible for the temperature correlated patterns of endosymbiont prevalence in natural populations.
Collapse
Affiliation(s)
| | | | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
6
|
Yang K, Qin PH, Yuan MY, Chen L, Zhang YJ, Chu D. Infection density pattern of Cardinium affects the responses of bacterial communities in an invasive whitefly under heat conditions. INSECT SCIENCE 2023; 30:1149-1164. [PMID: 36331043 DOI: 10.1111/1744-7917.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Communities of bacteria, especially symbionts, are vital for the growth and development of insects and other arthropods, including Bemisia tabaci Mediterranean (MED), a destructive and invasive insect pest. However, the infection density patterns and influence factors of bacteria in whiteflies, which mainly include symbionts, remain largely unclear. To reveal the different density patterns of Cardinium in B. tabaci MED populations and the impacts of high temperatures on whiteflies with different Cardinium density infection patterns, 2 isofemale lines isolated from B. tabaci MED from the same geographical population of China and from B. tabaci MED collected from other countries and locations were examined using several techniques and methods, including fluorescence in situ hybridization (FISH), quantitative real-time polymerase chain reaction (qPCR), 16S rRNA gene sequencing, and 2b-RAD sequencing. The results showed that there were 2 different infection density patterns of Cardinium in B. tabaci MED (including 1 high-density pattern and 1 low-density pattern). For whiteflies with low-density Cardinium, conventional PCR could not detect Cardinium, but the other techniques confirmed that there was a low level of Cardinium within hosts. High temperature significantly decreased the diversity of bacterial communities: the relative titer of Cardinium increased but the density of Rickettsia decreased in the isofemale line with high-density Cardinium. However, high temperature did not influence the diversity and symbiont density in the line with low-density Cardinium. Moreover, high temperature influenced the functions of bacterial communities in whiteflies with high-density Cardinium but did not affect the bacterial functions in whiteflies with low-density Cardinium. Our results provide novel insights into the complex associations between symbionts and host insects.
Collapse
Affiliation(s)
- Kun Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Peng-Hao Qin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Meng-Ying Yuan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
7
|
Verhulst EC, Pannebakker BA, Geuverink E. Variation in sex determination mechanisms may constrain parthenogenesis-induction by endosymbionts in haplodiploid systems. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101023. [PMID: 36958587 DOI: 10.1016/j.cois.2023.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Endosymbionts are maternally transmitted, and therefore benefit from maximizing female offspring numbers. Parthenogenesis-induction (PI) is the most effective type of manipulation for transmission, but has solely been detected in haplodiploid species, whereas cytoplasmic incompatibility (CI) is detected frequently across the arthropod phylum, including haplodiploids. This puzzling observation led us to hypothesize that the molecular sex-determination mechanism of the haplodiploid host may be a constraining factor in the ability of endosymbionts to induce parthenogenesis. Recent insights indicate that PI-endosymbionts may be able to directly manipulate sex-determination genes to induce the necessary steps required for PI in haplodiploids. However, sex-determination cascades vary extensively, so PI-induction would require a specialized and host-dependent tool set. Contrastingly, CI-related genes target conserved cell-cycle mechanisms, are located on mobile elements, and spread easily. Finally, endosymbiont-manipulations may have a strong impact on the effectiveness of haplodiploid biocontrol agents, but can also be used to enhance their efficacy.
Collapse
Affiliation(s)
- Eveline C Verhulst
- Wageningen Univer sity & Research, Laboratory of Entomology, The Netherlands.
| | - Bart A Pannebakker
- Wageningen University & Research, Laboratory of Genetics, The Netherlands
| | - Elzemiek Geuverink
- University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), The Netherlands.
| |
Collapse
|
8
|
Liu B, Ren YS, Su CY, Abe Y, Zhu DH. Pangenomic analysis of Wolbachia provides insight into the evolution of host adaptation and cytoplasmic incompatibility factor genes. Front Microbiol 2023; 14:1084839. [PMID: 36819029 PMCID: PMC9937081 DOI: 10.3389/fmicb.2023.1084839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level. Methods Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection. Results Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains. Discussion This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ye-Song Ren
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Yoshihisa Abe
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,*Correspondence: Dao-Hong Zhu, ✉
| |
Collapse
|
9
|
Ritchie IT, Needles KT, Leigh BA, Kaur R, Bordenstein SR. Transgenic cytoplasmic incompatibility persists across age and temperature variation in Drosophila melanogaster. iScience 2022; 25:105327. [PMID: 36304111 PMCID: PMC9593245 DOI: 10.1016/j.isci.2022.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Environmental stressors can impact the basic biology and applications of host-microbe symbioses. For example, Wolbachia symbiont densities and cytoplasmic incompatibility (CI) levels can decline in response to extreme temperatures and host aging. To investigate whether transgenic expression of CI-causing cif genes overcomes the environmental sensitivity of CI, we exposed transgenic male flies to low and high temperatures as well as aging treatments. Our results indicate that transgenic cif expression induces nearly complete CI regardless of temperature and aging, despite severe weakening of Wolbachia-based wild-type CI. Strong CI levels correlate with higher levels of cif transgene expression in young males. Altogether, our results highlight that transgenic CI persists against common environmental pressures and may be relevant for future control applications involving the cifA and cifB transgenes.
Collapse
Affiliation(s)
- Isabella T. Ritchie
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Kelly T. Needles
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
| | - Rupinder Kaur
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
- The Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- The Pennsylvania State University, Microbiome Center, Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| | - Seth R. Bordenstein
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, TN 37235, USA
- The Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- The Pennsylvania State University, Microbiome Center, Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| |
Collapse
|
10
|
Wang W, Cui W, Yang H. Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility. Environ Microbiol 2022; 24:4519-4532. [PMID: 35859330 DOI: 10.1111/1462-2920.16125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/27/2022]
Abstract
Wolbachia are the most successful intracellular bacteria in arthropods. They can manipulate host reproduction to favour infected females, which transmit Wolbachia to their progeny and increase the presence of Wolbachia in the population. The reproductive alterations caused by Wolbachia include feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI), among which CI is the most common. CI leads to embryonic lethality when Wolbachia-infected males mate with uninfected females or those infected with an incompatible strain. This lethality can be rescued if females are infected with a compatible strain. Although CI was described in the 1960s and its connection to Wolbachia was made in the 1970s, the genes responsible for CI, called CI factors, were not identified until recently. Since then, significant progress has been made in understanding the molecular mechanism of CI using a combination of genetic, phylogenetic, biochemical and structural approaches. The detailed molecular mechanisms behind this fascinating endosymbiotic bacteria-induced phenotype have begun to emerge. Here, we summarize recent progress in understanding the molecular mechanism of CI, especially focusing on the recently solved CI factor structures and discussing what these new structures brought in terms of CI mechanism.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
11
|
Zhou JC, Shang D, Qian Q, Zhang C, Zhang LS, Dong H. Penetrance during Wolbachia-mediated parthenogenesis of Trichogramma wasps is reduced by continuous oviposition, associated with exhaustion of Wolbachia titers in ovary and offspring eggs. PEST MANAGEMENT SCIENCE 2022; 78:3080-3089. [PMID: 35437949 DOI: 10.1002/ps.6934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Thelytokous Wolbachia-infected Trichogramma wasps are superior to bisexual uninfected wasps regarding biological control programs. However, continuous oviposition weakens the parthenogenesis-inducing (PI) strength of Wolbachia. Whether this reduced PI strength relates to decreases in the titer of Wolbachia in the ovary and offspring eggs of Trichogramma remains unclear. Here, using fluorescence in situ hybridization (FISH) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) methods, we investigated how the penetrance of Wolbachia-mediated parthenogenesis, Wolbachia density, and distributions of two Wolbachia-infected Trichogramma species, T. pretiosum (TP) and T. dendrolimi (TD), were influenced by different host access treatments [newly-emerged virgin females (NE), 7-day-old females without access to host eggs (NAH), and 7-day-old virgin females with access to host eggs (AH)]. RESULTS Continuous oviposition decreased Wolbachia PI strength and titers in TP and TD. Continuous oviposition in AH decreased Wolbachia titers in abdomen and offspring eggs of TP and TD females, compared with NAH and NE; NAH had a lower thorax Wolbachia titer than NE. The numbers of parasitized host eggs and offspring wasps, and emergence rates of offspring deposited by AH were lower than those of NE and NAH, for either species. CONCLUSION Weakened PI strength, driven by continuous oviposition in Trichogramma wasps, is associated with Wolbachia titer exhaustion in ovary and offspring eggs. Wolbachia density is dependent on PI strength in Trichogramma wasps, highlighting the side effects of continuous oviposition regarding thelytokous Wolbachia-infected Trichogramma in biological control programs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Cheng Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, P. R. China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dan Shang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, P. R. China
| | - Qian Qian
- College of Plant Protection, Shenyang Agricultural University, Shenyang, P. R. China
| | - Chen Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, P. R. China
| | - Li-Sheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
12
|
Wybouw N, Mortier F, Bonte D. Interacting host modifier systems control
Wolbachia
‐induced cytoplasmic incompatibility in a haplodiploid mite. Evol Lett 2022; 6:255-265. [PMID: 35784453 PMCID: PMC9233175 DOI: 10.1002/evl3.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Reproductive parasites such as Wolbachia spread within host populations by inducing cytoplasmic incompatibility (CI). CI occurs when parasite‐modified sperm fertilizes uninfected eggs and is typified by great variation in strength across biological systems. In haplodiploid hosts, CI has different phenotypic outcomes depending on whether the fertilized eggs die or develop into males. Genetic conflict theories predict the evolution of host modulation of CI, which in turn influences the stability of reproductive parasitism. However, despite the ubiquity of CI‐inducing parasites in nature, there is scarce evidence for intraspecific host modulation of CI strength and phenotype. Here, we tested for intraspecific host modulation of Wolbachia‐induced CI in haplodiploid Tetranychus urticae mites. Using a single CI‐inducing Wolbachia variant and mitochondrion, a nuclear panel was created that consisted of infected and cured near‐isogenic lines. We performed a highly replicated age‐synchronized full diallel cross composed of incompatible and compatible control crosses. We uncovered host modifier systems that cause striking variation in CI strength when carried by infected T. urticae males. We observed a continuum of CI phenotypes in our crosses and identified strong intraspecific female modulation of the CI phenotype. Crosses established a recessive genetic basis for the maternal effect and were consistent with polygenic Mendelian inheritance. Both male and female modulation interacted with the genotype of the mating partner. Our findings identify spermatogenesis as an important target of selection for host modulation of CI strength and underscore the importance of maternal genetic effects for the CI phenotype. Our findings reveal that intraspecific host modulation of CI is underpinned by complex genetic architectures and confirm that the evolution of reproductive parasitism is contingent on host genetics.
Collapse
Affiliation(s)
- Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology Faculty of Sciences, Ghent University Ghent Belgium
| | - Frederik Mortier
- Terrestrial Ecology Unit, Department of Biology Faculty of Sciences, Ghent University Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology Faculty of Sciences, Ghent University Ghent Belgium
| |
Collapse
|
13
|
Bagheri Z, Talebi AA, Asgari S, Mehrabadi M. Wolbachia promotes successful sex with siblings in the parasitoid Habrobracon hebetor. PEST MANAGEMENT SCIENCE 2022; 78:362-368. [PMID: 34532954 DOI: 10.1002/ps.6649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Wolbachia are intracellular α-proteobacteria that have a wide distribution among various arthropods and nematodes. They affect the host reproduction favoring their maternal transmission, which sets up a potential conflict in inbreeding situations when the host avoids sexual reproduction preventing inbreeding depression, while Wolbachia pushes it. We used the wasp Habrobracon hebetor to test the hypothesis that Wolbachia modulates inbreeding avoidance behavior and promotes sib mating. RESULTS Our results showed no obvious pre-copulatory inbreeding avoidance in this wasp. However, H. hebetor showed a strong post-copulatory inbreeding avoidance behavior that resulted in a low fertilization rate of uninfected siblings and therefore high rate of production of male progeny was obtained. We observed higher rates of fertilization success in the Wolbachia-infected lines that resulted in significantly higher female progeny production compared to the uninfected sib mates. Since diploid females are the result of successful fertilization due to haplodiploidy sex determination system in this insect, our results indicate that Wolbachia promoted fertile sib mating in H. hebetor. Interestingly, the rate of adult emergence in the progeny of Wolbachia-infected sib mates were almost similar to the non-sib mate crosses and significantly more than those observed in the uninfected sib mate crosses. CONCLUSION Our results support the idea that Wolbachia modulates inbreeding avoidance and promotes sib mating and also mitigates inbreeding depression. By promoting successful sex with siblings and increasing the probability of female progeny, Wolbachia enhances its transmission to the next generation. This is an undescribed effect of Wolbachia on the host reproduction. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeynab Bagheri
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Asghar Talebi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Male Age and Wolbachia Dynamics: Investigating How Fast and Why Bacterial Densities and Cytoplasmic Incompatibility Strengths Vary. mBio 2021; 12:e0299821. [PMID: 34903056 PMCID: PMC8686834 DOI: 10.1128/mbio.02998-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Endosymbionts can influence host reproduction and fitness to favor their maternal transmission. For example, endosymbiotic Wolbachia bacteria often cause cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-modified sperm. Infected females can rescue CI, providing them a relative fitness advantage. Wolbachia-induced CI strength varies widely and tends to decrease as host males age. Since strong CI drives Wolbachia to high equilibrium frequencies, understanding how fast and why CI strength declines with male age is crucial to explaining age-dependent CI’s influence on Wolbachia prevalence. Here, we investigate if Wolbachia densities and/or CI gene (cif) expression covary with CI-strength variation and explore covariates of age-dependent Wolbachia-density variation in two classic CI systems. wRi CI strength decreases slowly with Drosophila simulans male age (6%/day), but wMel CI strength decreases very rapidly (19%/day), yielding statistically insignificant CI after only 3 days of Drosophila melanogaster adult emergence. Wolbachia densities and cif expression in testes decrease as wRi-infected males age, but both surprisingly increase as wMel-infected males age, and CI strength declines. We then tested if phage lysis, Octomom copy number (which impacts wMel density), or host immune expression covary with age-dependent wMel densities. Only host immune expression correlated with density. Together, our results identify how fast CI strength declines with male age in two model systems and reveal unique relationships between male age, Wolbachia densities, cif expression, and host immunity. We discuss new hypotheses about the basis of age-dependent CI strength and its contributions to Wolbachia prevalence.
Collapse
|