1
|
Jing D, Liu F, Li S, Dong Y. Synergistic effects of SAP and PGPR on physiological characteristics of leaves and soil enzyme activities in the rhizosphere of poplar seedlings under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1485362. [PMID: 39539293 PMCID: PMC11557949 DOI: 10.3389/fpls.2024.1485362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Super absorbent polymers (SAP) provide moisture conditions that allow plant growth-promoting rhizobacteria (PGPR) to enter the soil for acclimatization and strain propagation. However, the effects of SAP co-applied with PGPR on the physiological characteristics of leaves and rhizosphere soil enzyme activities of poplar seedlings are not well understood. Here, a pot experiment using one-year-old poplar seedlings with five treatments, normal watering, drought stress (DR), drought stress + SAP (DR+SAP), drought stress + Priestia megaterium (DR +PGPR) and drought stress + SAP + P. megaterium (DR+S+P), was performed to analyze the contents of non-enzymatic antioxidants, osmotic regulators and hormones in leaves, as well as rhizosphere soil enzyme activities. Compared with normal watering, the DR treatment significantly decreased the contents of dehydroascorbate (DHA; 19.08%), reduced glutathione (GSH; 14.18%), oxidized glutathione, soluble protein (26.84%), indoleacetic acid (IAA; 9.47%), gibberellin (GA) and zeatin (ZT), the IAA/abscisic acid (ABA), GA/ABA, ZT/ABA and (IAA+GA+ZT)/ABA (34.67%) ratios in leaves, and the urease and sucrase activities in the rhizosphere soil. Additionally, it significantly increased the soluble sugar, proline and ABA contents in leaves. However, in comparison with the DR treatment, the DR+S+P treatment significantly increased the DHA (29.63%), GSH (15.13%), oxidized glutathione, soluble protein (29.15%), IAA (12.55%) and GA contents, the IAA/ABA, GA/ABA, ZT/ABA and (IAA+GA+ZT)/ABA (46.85%) ratios in leaves, and the urease, sucrose and catalase activities in rhizosphere soil to different degrees. The soluble sugar, proline and ABA contents markedly reduced in comparison to the DR treatment. The effects of the DR+SAP and DR+PGPR treatments were generally weaker than those of the DR+S+P treatment. Thus, under drought-stress conditions, the simultaneous addition of SAP and P. megaterium enhanced the drought adaptive capacities of poplar seedlings by regulating the non-enzymatic antioxidants, osmotic regulators, and endogenous hormone content and balance in poplar seedling leaves, as well as by improving the rhizosphere soil enzyme activities.
Collapse
Affiliation(s)
- Dawei Jing
- College of Ecology, Resources and Environment, Dezhou University, Dezhou, China
| | - Fangchun Liu
- Institute of Resource and Environment, Shandong Academy of Forestry, Jinan, China
| | - Shanwen Li
- Key Laboratory for Genetic Improvement in Forest Trees of Shandong Province, Shandong Academy of Forestry, Jinan, China
| | | |
Collapse
|
2
|
Aguado-Santacruz GA, Arreola-Tostado JM, Aguirre-Mancilla C, García-Moya E. Use of systemic biofertilizers in sugarcane results in highly reproducible increments in yield and quality of harvests. Heliyon 2024; 10:e28750. [PMID: 38596061 PMCID: PMC11002039 DOI: 10.1016/j.heliyon.2024.e28750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/28/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
The utilization of a novel (systemic) biofertilizer containing Pseudomonas fluorescens, Azospirillum brasilense, and Bacillus subtilis and possessing the technology to facilitate the entry of bacteria through the stomata, was evaluated at three localities in Mexico (Potrero Nuevo, Veracruz; Ameca, Jalisco; and Champotón, Campeche) in two sugarcane varieties (NCO-310 and Mex 57-473) at different time scales. Inoculation of the systemic biofertilizer was imposed over the local agricultural management of the sugarcane; chemical fertilization of the experimental parcels at Potrero Nuevo was done using 70-20-20 and 120-80-80 at Ameca and Champotón. Three doses of the biofertilizer per hectare were applied during the annual productive cycle of sugarcane at each site; one year at Potrero Nuevo and Champotón; and six years at Ameca. The annual sugarcane yield was evaluated at each site. Additionally, sugar quality (°Brix or sucrose content) was evaluated at the three localities, while different variables of stalk performance were also measured at Ameca and Champotón. Our data provide evidence that this systemic biofertilizer consistently and reliably increased the sugarcane yield at all localities during the time of evaluation, ranging from 73.7 tons ha-1 at Potrero Nuevo (2.5 times increase; P < 0.05) and 77.7 tons ha-1 at Ameca (1.9 times increase; P < 0.05) to 23.8 tons ha-1 at Champotón (1.4 times increase; P < 0.05). This increase in sugarcane biomass was related to increased tillering rather than increased stalk height or diameter. This novel biological product improved the sugarcane quality in terms of °Brix (P < 0.05, 2.6° difference) and sucrose content (P < 0.5, 0.7% difference).
Collapse
Affiliation(s)
- Gerardo Armando Aguado-Santacruz
- BIOqualitum. Oriente 7 # 158, Ciudad Industrial, Celaya, Guanajuato, 38010, Mexico
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 6.5 Carretera Celaya-San Miguel de Allende, Celaya, Guanajuato, 38110, Mexico
| | | | - César Aguirre-Mancilla
- Tecnológico Nacional de México / IT de Roque. Km 8 Carretera Celaya - Juventino Rosas, C.P. 38110, Celaya, Guanajuato, Mexico
| | - Edmundo García-Moya
- Colegio de Postgraduados, Postgrado en Botánica, Montecillo, Texcoco, Estado de México, Mexico
| |
Collapse
|
3
|
Chen Y, Zhang X, Gong X, Tao T, Wang Z, Zhang J, Zhu Y. Recovery and utilization of waste filtrate from industrial biological fermentation: Development and metabolite profile of the Bacillus cereus liquid bio-fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118945. [PMID: 37717394 DOI: 10.1016/j.jenvman.2023.118945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Most fermentation waste filtrates can be used as raw materials for producing bio-fertilizers to reduce wastewater emissions and environmental pollution, but their bio-fertilizer utilization depends on the nutrients contained and their metabolized by functional microorganism. To achieve bio-fertilizer utilization of Acremonium terricola fermented waste filtrate, this study systematically explored the functional microbial species for making good use of waste liquid, optimized material process parameters for bio-fertilizer production based on D-optimal mixture design method, and analyzed the composition of the waste filtrate and its metabolism by functional microorganisms using a non-targeted LC-MS metagenomics technique. The results showed that Bacillus cereus was the functional microbial candidate for producing bio-fertilizer because of its more efficiently utilize the waste filtrate than other Bacillus sp. The optimal material process parameters of the liquid bio-fertilizer were the inoculum dose of 5% (v:v, %), 80% of waste filtrate, 0.25% of N, 3.5% of P2O5, 3.25% of K2O of mass percentage. Under these conditions, the colony forming unit (CFU) of Bacillus cereus could reach (1.59 ± 0.01) × 108 CFU/mL, which met the bio-fertilizer standard requirements of the People's Republic of China (NY/T798). Furthermore, the potential functions of bio-fertilizer were studied based on comparison of raw materials and production components: on the one hand, waste filtrate contained abundant of nitrogen and carbon sources, and bioactive substances secreted by Acremonium terricola, such as β-alanyl-L-lysine, anserine, UMP, L-lactic acid and etc., which could meet the nutrient requirements of the growth of Bacillus cereus; On the other hand, some compounds of waste filtrate with the potential to benefit the plant growth and defense, such as betaine aldehyde, (2E,6E)-farnesol, homogentisic acid and etc., were significantly up regulated by Bacillus cereus utilization of the filtrate. To sum up, this work highlighted that the waste filtrate could be efficiently developed into liquid bio-fertilizer by Bacillus cereus.
Collapse
Affiliation(s)
- Yukun Chen
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Xiaopeng Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xiaofang Gong
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Tao Tao
- Mudanjiang Ecological Environment Monitoring Center, Heilongjiang, 157000, China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
4
|
L. Ramalingappa P, Shrivastava M, Dhar S, Bandyopadhyay K, Prasad S, Langyan S, Tomer R, Khandelwal A, Darjee S, Singh R. Reducing options of ammonia volatilization and improving nitrogen use efficiency via organic and inorganic amendments in wheat ( Triticum aestivum L.). PeerJ 2023; 11:e14965. [PMID: 36908814 PMCID: PMC9997193 DOI: 10.7717/peerj.14965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Background This study investigates the effect of organic and inorganic supplements on the reduction of ammonia (NH3) volatilization, improvement in nitrogen use efficiency (NUE), and wheat yield. Methods A field experiment was conducted following a randomized block design with 10 treatments i.e., T1-without nitrogen (control), T2-recommended dose of nitrogen (RDN), T3-(N-(n-butyl) thiophosphoric triamide) (NBPT @ 0.5% w/w of RDN), T4-hydroquinone (HQ @ 0.3% w/w of RDN), T5-calcium carbide (CaC2 @ 1% w/w of RDN), T6-vesicular arbuscular mycorrhiza (VAM @ 10 kg ha-1), T7-(azotobacter @ 50 g kg-1 seeds), T8-(garlic powder @ 0.8% w/w of RDN), T9-(linseed oil @ 0.06% w/w of RDN), T10-(pongamia oil @ 0.06% w/w of RDN). Results The highest NH3 volatilization losses were observed in T2 at about 20.4 kg ha-1 per season. Significant reduction in NH3 volatilization losses were observed in T3 by 40%, T4 by 27%, and T8 by 17% when compared to the control treatment. Soil urease activity was found to be decreased in plots receiving amendments, T3, T4, and T5. The highest grain yield was observed in the T7 treated plot with 5.09 t ha-1, and straw yield of 9.44 t ha-1 in T4. Conclusion The shifting towards organic amendments is a feasible option to reduce NH3 volatilization from wheat cultivation and improves NUE.
Collapse
Affiliation(s)
- Pooja L. Ramalingappa
- Division of Environment Science, ICAR-Indian Agricultural Reserach Institute, Delhi, India
| | - Manoj Shrivastava
- Division of Environment Science, ICAR-Indian Agricultural Reserach Institute, Delhi, India
| | - Shiva Dhar
- Division of Agronomy, ICAR-Indian Agricultural Reserach Institute, Delhi, India
| | | | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Reserach Institute, Delhi, India
| | - Sapna Langyan
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Delhi, India
| | - Ritu Tomer
- Division of Environment Science, ICAR-Indian Agricultural Reserach Institute, Delhi, India
| | - Ashish Khandelwal
- Division of Environment Science, ICAR-Indian Agricultural Reserach Institute, Delhi, India
| | - Sibananda Darjee
- Division of Environment Science, ICAR-Indian Agricultural Reserach Institute, Delhi, India
| | - Renu Singh
- Division of Environment Science, ICAR-Indian Agricultural Reserach Institute, Delhi, India
| |
Collapse
|
5
|
Liu ZH, Yang ZW, Zhang J, Luo JY, Men Y, Wang YH, Xie Q. Stage correlation of symbiotic bacterial community and function in the development of litchi bugs (Hemiptera: Tessaratomidae). Antonie van Leeuwenhoek 2021; 115:125-139. [PMID: 34843017 DOI: 10.1007/s10482-021-01685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Bacterial symbionts of insects have been shown to play important roles in host fitness. However, little is known about the bacterial community of Tessaratoma papillosa which is one of the most destructive pests of the well-known fruits Litchi chinensis Sonn and Dimocarpus longan Lour in Oriental Region, especially in South-east Asia and adjacent areas. In this study, we surveyed the bacterial community diversity and dynamics of T. papillosa in all developmental stages with both culture-dependent and culture-independent methods by the third-generation sequencing technology. Five bacterial phyla were identified in seven developmental stages of T. papillosa. Proteobacteria was the dominant phylum and Pantoea was the dominant genus of T. papillosa. The results of alpha and beta diversity analyses showed that egg stage had the most complex bacterial community. Some of different developmental stages showed similarities, which were clustered into three phases: (1) egg stage, (2) early nymph stages (instars 1-3), and (3) late nymph stages (instars 4-5) and adult stage. Functional prediction indicated that the bacterial community played different roles in these three phases. Furthermore, 109 different bacterial strains were isolated and identified from various developmental stages. This study revealed the relationship between the symbiotic bacteria and the development of T. papillosa, and may thus contribute to the biological control techniques of T. papillosa in the future.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Wen Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. .,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|