1
|
Blom P, Smith GJ, van Kessel MAHJ, Koch H, Lücker S. Comprehensive evaluation of primer pairs targeting the ammonia monooxygenase subunit A gene of complete ammonia-oxidizing Nitrospira. Microbiol Spectr 2024; 12:e0051624. [PMID: 39166864 PMCID: PMC11448142 DOI: 10.1128/spectrum.00516-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Since the discovery of complete ammonia oxidizers (comammox) within the genus Nitrospira, their distribution and abundance across habitats have been intensively studied to better understand their ecological significance. Many primers targeting their ammonia monooxygenase subunit A gene (amoA) have been designed to detect and quantify comammox bacteria and to describe their community structure. We identified 38 published primers, but only few had high coverage and specificity for all known comammox Nitrospira or one of the two described subclades. For each target group, we comprehensively evaluated selected primer pairs using in silico analyses, endpoint PCRs, qPCRs, and amplicon sequencing on samples from various environments. Endpoint PCRs and qPCRs showed that the most commonly used primer pairs (comaA-244F/659R, comaB-244F/659R, and Ntsp-amoA162F/359R) produced several bands, which likely inflated quantifications via qPCR. In contrast, the recently published primer combinations CA377F/C576R, CB377F/C576R, and CA-CB377F/C576R resulted mostly in a single band. Furthermore, amplicon sequencing demonstrated that these primer combinations also captured the highest richness of comammox Nitrospira. Taken together, our results indicate that few existing comammox amoA primer combinations have both high specificity and coverage and that the choice of these high-specificity and high-coverage primer pairs substantially impacts the accurate detection, quantification, and community description of comammox bacteria. We, therefore, recommend using the CA377F/C576R, CB377F/C576R, and CA-CB377F/C576R primer pairs.IMPORTANCEBacteria that can fully convert ammonia via nitrite to nitrate, the complete ammonia oxidizers (comammox), were recently discovered and are found in many natural and engineered environments. PCR-based tools to study their abundance and diversity were rapidly developed, resulting in a plethora of primers available, many of which are widely used. The presence of comammox bacteria in an environment can, however, only be correctly determined if the used primers detect all members of this group while not detecting any other guilds. This study assesses the coverage and specificity of existing primers targeting comammox bacteria using both computational and standard molecular techniques, revealing large differences in their performance. The uniform usage of well-performing primers across studies could aid in generating comparable and generalizable data to better understand the importance of comammox bacteria in the environment.
Collapse
Affiliation(s)
- Pieter Blom
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Garrett J Smith
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln an der Donau, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Bowen JL, Spivak AC, Bernhard AE, Fulweiler RW, Giblin AE. Salt marsh nitrogen cycling: where land meets sea. Trends Microbiol 2024; 32:565-576. [PMID: 37827901 DOI: 10.1016/j.tim.2023.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Salt marshes sit at the terrestrial-aquatic interface of oceans around the world. Unique features of salt marshes that differentiate them from their upland or offshore counterparts include high rates of primary production from vascular plants and saturated saline soils that lead to sharp redox gradients and a diversity of electron acceptors and donors. Moreover, the dynamic nature of root oxygen loss and tidal forcing leads to unique biogeochemical conditions that promote nitrogen cycling. Here, we highlight recent advances in our understanding of key nitrogen cycling processes in salt marshes and discuss areas where additional research is needed to better predict how salt marsh N cycling will respond to future environmental change.
Collapse
Affiliation(s)
- Jennifer L Bowen
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Rd, Nahant, MA, USA.
| | - Amanda C Spivak
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Anne E Bernhard
- Biology Department, Connecticut College, New London, CT 06320, USA
| | - Robinson W Fulweiler
- Department of Earth and Environment, Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, MA 02543, USA
| |
Collapse
|
3
|
Yu B, Zeng Q, Li J, Li J, Tan X, Gao X, Mao Z, Huang P, Wu S. Sediment depth-related variations of comammox Nitrospira: Evidence in the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167055. [PMID: 37709074 DOI: 10.1016/j.scitotenv.2023.167055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The recent discovery of comammox Nitrospira as complete ammonia-oxidizing microorganism has fundamentally revolutionized our understanding of nitrogen cycling in sediment environments. However, knowledge regarding their abundance, biodiversity, community structure, and interactions is predominantly limited to the upper layers (0-20 cm). To address this gap, we collected sediment samples along profiles ranging from 0 to 300 cm in depth at three locations within the middle segment of the Three Gorges Reservoir (TGR), China. Quantitative real-time PCR (qPCR) analyses suggested that comammox bacteria were not only ubiquitous in deep sediments but also more abundant than ammonia-oxidizing bacteria (AOB). Ammonia monooxygenases subunit A (amoA) gene amplicon sequencing illuminated that comammox bacteria were more sensitive to sedimental depth compared to AOB and ammonia-oxidizing archaea (AOA), as evidenced by a more significant decline in community diversity and similarity over distance along sediment vertical profiles. Notably, we discovered that the amoA gene abundance, alpha- and beta-diversity of comammox bacteria exerted an essential contribution to potential nitrification rates according to random forest model. Phylogenetic analysis indicted that most comammox bacteria within sediment samples belonged to clade A.2. Intriguingly, the average relative abundance of comammox clade A.2 displayed a noteworthy rise with sediment depth, whereas clade A.1 demonstrated a converse pattern, unveiling distinct ecological niche adaptations of these two clades along the sediment profile. Ecological network analysis further revealed closer interactions between comammox bacteria and canonical ammonia oxidizers in the superficial layer (0-40 cm), with the network structure gradually simplifying from superficial to deep sediment (200-300 cm). Overall, these findings broaden the current recognition of the geographic distribution and niche segregation of comammox bacteria at the fine scale of the sediments ecosystems and provide insights into sediment depth-related variations of their coexistence network patterns in large freshwater reservoirs.
Collapse
Affiliation(s)
- Baohong Yu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Quanchao Zeng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| | - Jinlin Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Jun Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Xun Tan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Xin Gao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Ziqiang Mao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Ping Huang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
4
|
Lin Y, Tang KW, Ye G, Yang P, Hu HW, Tong C, Zheng Y, Feng M, Deng M, He ZY, He JZ. Community assembly of comammox Nitrospira in coastal wetlands across southeastern China. Appl Environ Microbiol 2023; 89:e0080723. [PMID: 37671870 PMCID: PMC10537594 DOI: 10.1128/aem.00807-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023] Open
Abstract
Complete ammonia oxidizers (comammox Nitrospira) are ubiquitous in coastal wetland sediments and play an important role in nitrification. Our study examined the impact of habitat modifications on comammox Nitrospira communities in coastal wetland sediments across tropical and subtropical regions of southeastern China. Samples were collected from 21 coastal wetlands in five provinces where native mudflats were invaded by Spartina alterniflora and subsequently converted to aquaculture ponds. The results showed that comammox Nitrospira abundances were mainly influenced by sediment grain size rather than by habitat modifications. Compared to S. alterniflora marshes and native mudflats, aquaculture pond sediments had lower comammox Nitrospira diversity, lower clade A.1 abundance, and higher clade A.2 abundance. Sulfate concentration was the most important factor controlling the diversity of comammox Nitrospira. The response of comammox Nitrospira community to habitat change varied significantly by location, and environmental variables accounted for only 11.2% of the variations in community structure across all sites. In all three habitat types, dispersal limitation largely controlled the comammox Nitrospira community assembly process, indicating the stochastic nature of these sediment communities in coastal wetlands. IMPORTANCE Comammox Nitrospira have recently gained attention for their potential role in nitrification and nitrous oxide (N2O) emissions in soil and sediment. However, their distribution and assembly in impacted coastal wetland are poorly understood, particularly on a large spatial scale. Our study provides novel evidence that the effects of habitat modification on comammox Nitrospira communities are dependent on the location of the wetland. We also found that the assembly of comammox Nitrospira communities in coastal wetlands was mainly governed by stochastic processes. Nevertheless, sediment grain size and sulfate concentration were identified as key variables affecting comammox Nitrospira abundance and diversity in coastal sediments. These findings are significant as they advance our understanding of the environmental adaptation of comammox Nitrospira and how future landscape modifications may impact their abundance and diversity in coastal wetlands.
Collapse
Affiliation(s)
- Yongxin Lin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Kam W. Tang
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| | - Guiping Ye
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, Fujian, China
| | - Ping Yang
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, Fujian, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chuan Tong
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, Fujian, China
| | - Yong Zheng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Mengmeng Feng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Milin Deng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Zi-Yang He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Ji-Zheng He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Lin Y, Hu HW, Gao GF, Cai Y. Editorial: Nitrogen-cycling microorganisms under global change: Response and feedback. Front Microbiol 2023; 14:1166306. [PMID: 36937309 PMCID: PMC10018153 DOI: 10.3389/fmicb.2023.1166306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Affiliation(s)
- Yongxin Lin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, China
- *Correspondence: Yongxin Lin
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|