1
|
Sun S, Liu C, Zhang Y, Yue Y, Sun S, Bai Y, Zhang P, Ravanbakhsh M, Dini-Andreote F, Li R, Zhang Z, Jousset A, Shen Q, A Kowalchuk G, Xiong W. Divergent impacts of fertilization regimes on below-ground prokaryotic and eukaryotic communities in the Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121379. [PMID: 38870787 DOI: 10.1016/j.jenvman.2024.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation.
Collapse
Affiliation(s)
- Shuo Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chen Liu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yun Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yang Yue
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shiqi Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yang Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Pengfei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenhua Zhang
- Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Nanjing, People's Republic of China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands
| | - Wu Xiong
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
2
|
Du J, Jia T, Liu J, Chai B. Relationships among protozoa, bacteria and fungi in polycyclic aromatic hydrocarbon-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115904. [PMID: 38181605 DOI: 10.1016/j.ecoenv.2023.115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Soil bacterial and fungal communities play key roles in the degradation of organic contaminants, and their structure and function are regulated by bottom-up and top-down factors. Microbial ecological effects of polycyclic aromatic hydrocarbons (PAHs) and trophic interactions among protozoa and bacteria/fungi in PAH-polluted soils have yet to be determined. We investigated the trophic interactions and structure of the microbiome in PAH-contaminated wasteland and farmland soils. The results indicated that the total concentration of the 16 PAHs (∑PAHs) was significantly correlated with the Shannon index, NMDS1 and the relative abundances of bacteria, fungi and protozoa (e.g., Pseudofungi) in the microbiome. Structural equation modelling and linear fitting demonstrated cascading relationships among PAHs, protozoan and bacterial/fungal communities in terms of abundance and diversity. Notably, individual PAHs were significantly correlated with microbe-grazing protozoa at the genus level, and the abundances of these organisms were significantly correlated with those of PAH-degrading bacteria and fungi. Bipartite networks and linear fitting indicated that protozoa indirectly modulate PAH degradation by regulating PAH-degrading bacterial and fungal communities. Therefore, protozoa might be involved in regulating the microbial degradation of PAHs by predation in contaminated soil.
Collapse
Affiliation(s)
- Jingqi Du
- Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Institute of the Loess Plateau, Shanxi University, Taiyuan, China; Department of Life Sciences, Lyuliang University, Lyuliang, China
| | - Tong Jia
- Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Institute of the Loess Plateau, Shanxi University, Taiyuan, China
| | - Jinxian Liu
- Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Institute of the Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Institute of the Loess Plateau, Shanxi University, Taiyuan, China.
| |
Collapse
|