1
|
Liang X, Yang JF, Huang ZH, Ma X, Yan Y, Qi SH. New Antibacterial Peptaibiotics against Plant and Fish Pathogens from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6402-6413. [PMID: 38491989 DOI: 10.1021/acs.jafc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Bacterial diseases could severely harm agricultural production. To develop new antibacterial agents, the secondary metabolites of a deep-sea-derived fungus Simplicillium obclavatum EIODSF 020 with antibacterial activities against plant and fish pathogens were investigated by a bioassay-guided approach, which led to the isolation of 11 new peptaibiotics, simplicpeptaibs A-K (1-11). They contain 16-19 residues, including β-alanine, tyrosine, or tyrosine O-sulfate, that were rarely present in peptaibiotics. Their structures were elucidated by spectroscopic analyses (NMR, HRMS, HRMS2, and ECD) and Marfey's method. The primary and secondary structures of novel sulfated peptaibiotic 9 were reconfirmed by single-crystal X-ray diffraction analysis. Genome sequencing of S. obclavatum EIODSF 020 allowed the detection of a gene cluster encoding two individual NRPSs (totally containing 19 modules) that was closely related to simplicpeptaib biosynthesis. Antibacterial investigations of 1-11 together with the previously isolated linear and cyclic peptides from this strain suggested the antibacterial property of this fungus was attributed to the peptaibiotics and cyclic lipopeptides. Among them, compounds 4, 6, 7, and 9 showed significant activity against the tobacco pathogen Ralstonia solanacearum or tilapia pathogens Streptococcus iniae and Streptococcus agalactiae. The antibacterial activity of 6 against R. solanacearum could be enhanced by the addition of 1% NaCl. The structure-bioactivity relationship of simplicpeptaibs was discussed.
Collapse
Affiliation(s)
- Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jia-Fan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yan Yan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
2
|
Balázs D, Marik T, Szekeres A, Vágvölgyi C, Kredics L, Tyagi C. Structure-activity correlations for peptaibols obtained from clade Longibrachiatum of Trichoderma: A combined experimental and computational approach. Comput Struct Biotechnol J 2023; 21:1860-1873. [PMID: 36915379 PMCID: PMC10006723 DOI: 10.1016/j.csbj.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Integrated disease management and plant protection have been discussed with much fervor in the past decade due to the rising environmental concerns of using industrially produced pesticides. Members of the genus Trichoderma are a subject of considerable research today due to their several properties as biocontrol agents. In our study, the peptaibol production of Trichoderma longibrachiatum SZMC 1775, T. longibrachiatum f. bissettii SZMC 12546, T. reesei SZMC 22616, T. reesei SZMC 22614, T. saturnisporum SZMC 22606 and T. effusum SZMC 22611 were investigated to elucidate structure-activity relationships (SARs) between the properties of peptaibols and their 3D structures. The effects of peptaibol mixtures obtained from every Trichoderma strain were examined against nine commonly known bacteria. The lowest minimum inhibitory concentrations (MIC, mg ml-1) were exerted by T. longibrachiatum f. bissettii SZMC 12546 against Gram-positive bacteria, which was also able to inhibit the plant pathogenic Gram-negative Rhizobium radiobacter. Accelerated molecular dynamics (aMD) simulations were performed in aqueous solvent to explore the folding dynamics of 12 selected peptaibol sequences. The most characteristic difference between the peptaibols from group A and B relies in the 'Gly-Leu-Aib-Pro' and 'Gly-Aib-Aib-Pro' motifs ('Aib' stands for α-aminoisobutyric acid), which imparted a significant effect on the folding dynamics in water and might be correlated with their expressed bioactivity. In our aMD simulation experiments, Group A peptaibols showed more restricted folding dynamics with well-folded helical conformations as the most stable representative structures. This structural stability and dynamics may contribute to their bioactivity against the selected bacterial species.
Collapse
Affiliation(s)
- Dóra Balázs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
3
|
Pohorille A, Wilson MA. Computational Electrophysiology from a Single Molecular Dynamics Simulation and the Electrodiffusion Model. J Phys Chem B 2021; 125:3132-3144. [DOI: 10.1021/acs.jpcb.0c10737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Pohorille
- Exobiology Branch, MS239-4, NASA Ames Research Center, Moffett Field, California 94035, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94132, United States
| | - Michael A. Wilson
- Exobiology Branch, MS239-4, NASA Ames Research Center, Moffett Field, California 94035, United States
- SETI Institute, 189 Bernardo Avenue, Suite 200, Mountain View, California 94043, United States
| |
Collapse
|
4
|
De Zotti M, Syryamina VN, Hussain R, Longo E, Siligardi G, Dzuba SA, Stella L, Formaggio F. A Temperature-Driven, Reversible, Helical-Handedness Inversion in Peptaibol Analogues Tuned by the C-Terminal Capping Moiety. Chembiochem 2019; 20:2125-2132. [PMID: 31095838 DOI: 10.1002/cbic.201900235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 11/07/2022]
Abstract
Trichogin is a natural peptide endowed with antimicrobial and antitumor activity. A member of the peptaibol family, trichogin possesses a C-terminal amino alcohol. In the past, this moiety was substituted for a methyl ester for synthetic purposes and it was observed that this apparently slight modification caused significant changes in the peptide bioactivity. With the aim of understanding the reasons behind such observations, a detailed spectroscopic study on a number of trichogin analogues has been performed. Herein, data obtained from synchrotron radiation circular dichroism, NMR spectroscopy, and fluorescence spectroscopy in organic solvents at cryogenic temperatures are compared with those independently acquired by means of EPR spectroscopy at 80 K. It is unambiguously revealed that the presence of a reversible, temperature-driven, screw-sense interconversion from a right- to left-handed helix is determined by the C-terminal capping moiety. Data demonstrate, for the first time, the key role of a C-terminal methyl ester in promoting peptide screw-sense inversion.
Collapse
Affiliation(s)
- Marta De Zotti
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, RAS, Ulitsa Institutskaya 3, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Ulitsa Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Innovation Campus, Chilton, Didcot, Oxfordshire, UK
| | - Edoardo Longo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bozen-Bolzano, Italy
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Innovation Campus, Chilton, Didcot, Oxfordshire, UK
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, RAS, Ulitsa Institutskaya 3, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Ulitsa Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della ricerca scientifica 1, 00133, Rome, Italy
| | - Fernando Formaggio
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
5
|
Marik T, Tyagi C, Racić G, Rakk D, Szekeres A, Vágvölgyi C, Kredics L. New 19-Residue Peptaibols from Trichoderma Clade Viride. Microorganisms 2018; 6:microorganisms6030085. [PMID: 30103563 PMCID: PMC6165201 DOI: 10.3390/microorganisms6030085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Trichoderma koningiopsis and T. gamsii belong to clade Viride of Trichoderma, the largest and most diverse group of this genus. They produce a wide range of bioactive secondary metabolites, including peptaibols with antibacterial, antifungal, and antiviral properties. The unusual amino acid residues of peptaibols, i.e., α-aminoisobutyric acid (Aib), isovaline (Iva), and the C-terminal 1,2-amino alcohol make them unique among peptides. In this study, the peptaibiomes of T. koningiopsis and T. gamsii were investigated by HPLC-ESI-MS. The examined strains appeared to produce 19-residue peptaibols, most of which are unknown from literature, but their amino acid sequences are similar to those of trikoningins, tricholongins, trichostrigocins, trichorzianins, and trichorzins. A new group of peptaibols detected in T. koningiopsis are described here under the name “Koningiopsin”. Trikoningin KA V, the closest peptaibol compound to the peptaibols produced by these two strains, was selected for structural investigation by short MD simulation, which revealed that many residues show high preference for left handed helix formation. The bioactivity of the peptaibol mixtures produced by T. koningiopsis and T. gamsii was tested on agar plates against bacteria, yeasts, and filamentous fungi. The results revealed characteristic differences in bioactivities towards the different groups of target microorganisms, which can be explained with the differences in their cell wall structures.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Gordana Racić
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia.
| | - Dávid Rakk
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
6
|
Fragiadaki I, Katogiritis A, Calogeropoulou T, Brückner H, Scoulica E. Synergistic combination of alkylphosphocholines with peptaibols in targeting Leishmania infantum in vitro. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:194-202. [PMID: 29631127 PMCID: PMC6039304 DOI: 10.1016/j.ijpddr.2018.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
Anti-leishmanial treatment increasingly encounters therapeutic limitations due to drug toxicity and development of resistance. The effort for new therapeutic strategies led us to work on combinations of chemically different compounds that could yield enhanced leishmanicidal effect. Peptaibols are a special type of antimicrobial peptides that are able to form ion channels in cell membranes and potentially affect cell viability. We assayed the antileishmanial activity of two well studied helical peptaibols, the 16-residue antiamoebin and the 20-residue alamethicin-analogue suzukacillin, and we evaluated the biological effect of their combination with the alkylphosphocholine miltefosine and its synthetic analogue TC52. The peptaibols tested exhibited only moderate antileishmanial activity, however their combination with miltefosine had a super-additive effect against the intracellular parasite (combination index 0.83 and 0.43 for antiamoebin and suzukacillin respectively). Drug combinations altered the redox stage of promastigotes, rapidly dissipated mitochondrial membrane potential and induced concatenation of mitochondrial network promoting spheroidal morphology. These results evidenced a potent and specific antileishmanial effect of the peptaibols/miltefosine combinations, achieved with significantly lower concentrations of the compounds compared to monotherapy. Furthermore, they revealed the importance of exploring novel classes of bioactive compounds such as peptaibols and demonstrated for the first time that they can act in synergy with currently used antileishmanial drugs to improve the therapeutic outcome.
Collapse
Affiliation(s)
- Irene Fragiadaki
- University of Crete, Department of Clinical Microbiology and Microbial Pathogenesis, Faculty of Medicine, P.O. Box 2208, Heraklion, Greece
| | - Anna Katogiritis
- University of Crete, Department of Clinical Microbiology and Microbial Pathogenesis, Faculty of Medicine, P.O. Box 2208, Heraklion, Greece
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Biology Medicinal Chemistry and Biotechnology, 48 Vassileos Constantinou Ave., 116 35, Athens, Greece
| | - Hans Brückner
- Institute of Nutritional Sciences, Interdisciplinary Research Center (IFZ), University of Giessen, 35390, Giessen, Germany
| | - Effie Scoulica
- University of Crete, Department of Clinical Microbiology and Microbial Pathogenesis, Faculty of Medicine, P.O. Box 2208, Heraklion, Greece.
| |
Collapse
|
7
|
Marik T, Urbán P, Tyagi C, Szekeres A, Leitgeb B, Vágvölgyi M, Manczinger L, Druzhinina IS, Vágvölgyi C, Kredics L. Diversity Profile and Dynamics of Peptaibols Produced by Green Mould Trichoderma Species in Interactions with Their Hosts Agaricus bisporus and Pleurotus ostreatus. Chem Biodivers 2017; 14. [PMID: 28261948 DOI: 10.1002/cbdv.201700033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/27/2017] [Indexed: 11/06/2022]
Abstract
Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well-known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non-ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS-based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18-residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Péter Urbán
- Department of General and Environmental Microbiology, Faculty of Sciences, and Szentágothai Research Center, University of Pécs, Ifjúság útja 6, H-7624, Pécs, Hungary
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Balázs Leitgeb
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - László Manczinger
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Irina S Druzhinina
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Getreidemarkt 9/166, A-1060, Vienna, Austria
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| |
Collapse
|
8
|
Pohorille A, Wilson MA, Wei C. Validity of the Electrodiffusion Model for Calculating Conductance of Simple Ion Channels. J Phys Chem B 2016; 121:3607-3619. [PMID: 27936743 DOI: 10.1021/acs.jpcb.6b09598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examine the validity and utility of the electrodiffusion (ED) equation, i.e., the generalized Nernst-Planck equation, to characterize, in combination with molecular dynamics, the electrophysiological behavior of simple ion channels. As models, we consider three systems-two naturally occurring channels formed by α-helical bundles of peptaibols, trichotoxin, and alamethicin, and a synthetic, hexameric channel, formed by a peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. Starting with equilibrium properties, such as the potential of mean force experienced by an ion traversing the channel and diffusivity, obtained from molecular dynamics simulations, the ED equation can be used to determine the full current-voltage dependence with modest or no additional effort. The potential of mean force can be obtained not only from equilibrium simulations, but also, with comparable accuracy, from nonequilibrium simulations at a single voltage. The main assumptions underlying the ED equation appear to hold well for the channels and voltages studied here. To expand the utility of the ED equation, we examine what are the necessary and sufficient conditions for Ohmic and nonrectifying behavior and relate deviations from this behavior to the shape of the ionic potential of mean force.
Collapse
Affiliation(s)
- Andrew Pohorille
- Exobiology Branch, MS 239-4, NASA Ames Research Center , Moffett Field, California 94035, United States.,Department of Pharmaceutical Chemistry University of California , San Francisco, California 94132, United States
| | - Michael A Wilson
- Exobiology Branch, MS 239-4, NASA Ames Research Center , Moffett Field, California 94035, United States.,SETI Institute , 189 N Bernardo Ave #200, Mountain View, California 94043, United States
| | - Chenyu Wei
- Exobiology Branch, MS 239-4, NASA Ames Research Center , Moffett Field, California 94035, United States.,Department of Pharmaceutical Chemistry University of California , San Francisco, California 94132, United States
| |
Collapse
|
9
|
Degenkolb T, Fog Nielsen K, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Döhren H, Vilcinskas A, Brückner H. Peptaibol, Secondary-Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of theTrichoderma harzianumComplex. Chem Biodivers 2015; 12:662-84. [DOI: 10.1002/cbdv.201400300] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 11/05/2022]
|
10
|
Wilson MA, Nguyen TH, Pohorille A. Combining molecular dynamics and an electrodiffusion model to calculate ion channel conductance. J Chem Phys 2014; 141:22D519. [DOI: 10.1063/1.4900879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Michael A. Wilson
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, California 94035, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94132, USA
| | - Thuy Hien Nguyen
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, USA
| | - Andrew Pohorille
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, California 94035, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94132, USA
| |
Collapse
|
11
|
Rahaman A, Lazaridis T. A thermodynamic approach to alamethicin pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014. [DOI: 10.1016/j.bbamem.2014.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 2013; 19:758-69. [DOI: 10.1002/psc.2574] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Yoonkyung Park
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Antonio Palleschi
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Kyung-Soo Hahm
- BioLeaders Corp.; 559 Yongsan-Dong, Yuseong-Ku Daejeon 305-500 Korea
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
13
|
Rahaman A, Lazaridis T. A thermodynamic approach to alamethicin pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:98-105. [PMID: 24071593 DOI: 10.1016/j.bbamem.2013.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 12/15/2022]
Abstract
The structure and energetics of alamethicin Rf30 monomer to nonamer in cylindrical pores of 5 to 11Å radius are investigated using molecular dynamics simulations in an implicit membrane model that includes the free energy cost of acyl chain hydrophobic area exposure. Stable, low energy pores are obtained for certain combinations of radius and oligomeric number. The trimer and the tetramer formed 6Å pores that appear closed while the larger oligomers formed open pores at their optimal radius. The hexamer in an 8Å pore and the octamer in an 11Å pore give the lowest effective energy per monomer. However, all oligomers beyond the pentamer have comparable energies, consistent with the observation of multiple conductance levels. The results are consistent with the widely accepted "barrel-stave" model. The N terminal portion of the molecule exhibits smaller tilt with respect to the membrane normal than the C terminal portion, resulting in a pore shape that is a hybrid between a funnel and an hourglass. Transmembrane voltage has little effect on the structure of the oligomers but enhances or decreases their stability depending on its orientation. Antiparallel bundles are lower in energy than the commonly accepted parallel ones and could be present under certain experimental conditions. Dry aggregates (without an aqueous pore) have lower average effective energy than the corresponding aggregates in a pore, suggesting that alamethicin pores may be excited states that are stabilized in part by voltage and in part by the ion flow itself.
Collapse
Affiliation(s)
- Asif Rahaman
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
14
|
Röhrich CR, Iversen A, Jaklitsch WM, Voglmayr H, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Screening the biosphere: the fungicolous fungus Trichoderma phellinicola, a prolific source of hypophellins, new 17-, 18-, 19-, and 20-residue peptaibiotics. Chem Biodivers 2013; 10:787-812. [PMID: 23681726 PMCID: PMC3734673 DOI: 10.1002/cbdv.201200339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 02/04/2023]
Abstract
To investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened a specimen of the fungicolous fungus Trichoderma phellinicola (syn. Hypocrea phellinicola) growing on its natural host Phellinus ferruginosus. Results revealed that a particular group of non-ribosomal antibiotic polypeptides, peptaibiotics, which contain the non-proteinogenic marker amino acid, α-aminoisobutyric acid, was biosynthesized in the natural habitat by the fungicolous producer and, consequently, released into the host. By means of liquid chromatography coupled to electrospray high-resolution time-of-flight mass spectrometry, we detected ten 20-residue peptaibols in the specimen. Sequences of peptaibiotics found in vivo were independently confirmed by analyzing the peptaibiome of an agar plate culture of T. phellinicola CBS 119283 (ex-type) grown under laboratory conditions. Notably, this strain could be identified as a potent producer of 39 new 17-, 18-, and 19-residue peptaibiotics, which display the same building scheme as the 20-residue peptaibols found in the specimen. Two of the 19-residue peptaibols are tentatively assigned to carry tyrosinol, a novel C-terminal residue, as deduced from high-resolution tandem mass-spectrometry data. For the new peptaibiotics produced by T. phellinicola, the name 'hypophellin(s)', based on the teleomorph name, is introduced.
Collapse
Affiliation(s)
- Christian René Röhrich
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project GroupWinchesterstrasse 2, D-35394 Giessen (C. R. R.: phone: +49-641-99-37617, e-mail: ; A. V.: phone: +49-641-99-39500, fax: +49-641-4808-581, e-mail: )
| | - Anita Iversen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Walter Michael Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of ViennaRennweg 14, A-1030 Vienna (W. M. J.: phone: +43-1-4277-54055, e-mail: ; H. V.: phone: +43-4277-54050, e-mail: )
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of ViennaRennweg 14, A-1030 Vienna (W. M. J.: phone: +43-1-4277-54055, e-mail: ; H. V.: phone: +43-4277-54050, e-mail: )
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project GroupWinchesterstrasse 2, D-35394 Giessen (C. R. R.: phone: +49-641-99-37617, e-mail: ; A. V.: phone: +49-641-99-39500, fax: +49-641-4808-581, e-mail: )
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen (JLU)Heinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-641-99-37601; e-mail: )
| | - Kristian Fog Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Ulf Thrane
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Hans von Döhren
- Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of BerlinFranklinstraße 29, D-10587 Berlin (phone: +49-30-314-22697; fax: +49-30-314-24783; e-mail: )
| | - Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of GiessenHeinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-711-349919; e-mail: )
| | - Thomas Degenkolb
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen (JLU)Heinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-641-99-37601; e-mail: )
| |
Collapse
|
15
|
Röhrich CR, Iversen A, Jaklitsch WM, Voglmayr H, Berg A, Dörfelt H, Thrane U, Vilcinskas A, Nielsen KF, Von Döhren H, Brückner H, Degenkolb T. Hypopulvins, novel peptaibiotics from the polyporicolous fungus Hypocrea pulvinata, are produced during infection of its natural hosts. Fungal Biol 2012; 116:1219-1231. [PMID: 23245616 PMCID: PMC4886835 DOI: 10.1016/j.funbio.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 02/07/2023]
Abstract
In order to investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened specimens of the polyporicolous fungus Hypocrea pulvinata growing on its natural hosts Piptoporus betulinus and Fomitopsis pinicola. Results showed that a particular group of nonribosomally biosynthesised antibiotic polypeptides, the peptaibiotics, which contain the nonproteinogenic marker amino acid α-aminoisobutyric acid (Aib), was produced in the natural habitat by the fungicolous producer and, consequently, released into the host. Using liquid chromatography coupled to electrospray high-resolution mass spectrometry we detected especially 19-, but also 11-, 18-, and 20-residue peptaibiotics in the five infected specimens analysed. Structures of peptaibiotics found were confirmed by analysing the peptaibiome of pure agar cultures obtained by single-ascospore isolation from the specimens. The 19-residue peptaibols were determined as deletion sequences of the trichosporins B lacking the Aib residue in position 6. Notably, 26 of the 28 peptaibiotics sequenced were novel; therefore the name 'hypopulvins' was introduced. Considering not only the ubiquity of both the two host species but also the highly specific association between H. pulvinata and P. betulinus/F. pinicola, and the abundance of this fungicolous species in north temperate regions of the world, a decisive role for the peptaibiotics detected in this study is predicted, which may act as mediators of the complex interactions between the basidiomycetous host and its fungicolous ascomycete 'partner'. Structural analogies of the hypopulvins, particularly with other 18-, 19-, and 20-residue peptaibiotics, suggest that the hypopulvins are forming transmembrane ion channels and could thus support the hypothesis of a parasitic lifestyle of the fungicolous producer.
Collapse
Affiliation(s)
- Christian René Röhrich
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstraße 2, 35394 Gießen, Germany
| | - Anita Iversen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Walter Michael Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Albrecht Berg
- Department of Biomaterials, Innovent e.V., Prüssingstraße 27 B, 07745 Jena, Germany
| | - Heinrich Dörfelt
- Department of Microbial Communication, Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Ulf Thrane
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstraße 2, 35394 Gießen, Germany
- Institute of Phytopathology and Applied Zoology, Department of Applied Entomology, IFZ, Justus-Liebig University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Kristian Fog Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Hans Von Döhren
- Biochemistry and Molecular Biology, Institute of Chemistry, Technical University of Berlin, Franklinstraße 29, 10587 Berlin, Germany
| | - Hans Brückner
- Department of Food Sciences, IFZ, Justus-Liebig University Gießen, 35392 Gießen, Germany
- Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas Degenkolb
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
- Institute of Phytopathology and Applied Zoology, Department of Applied Entomology, IFZ, Justus-Liebig University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
16
|
Antimicrobial peptide trichokonin VI-induced alterations in the morphological and nanomechanical properties of Bacillus subtilis. PLoS One 2012; 7:e45818. [PMID: 23049870 PMCID: PMC3458079 DOI: 10.1371/journal.pone.0045818] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides are promising alternative antimicrobial agents compared to conventional antibiotics. Understanding the mode of action is important for their further application. We examined the interaction between trichokonin VI, a peptaibol isolated from Trichoderma pseudokoningii, and Bacillus subtilis, a representative Gram-positive bacterium. Trichokonin VI was effective against B. subtilis with a minimal inhibitory concentration of 25 µM. Trichokonin VI exhibited a concentration- and time-dependent effect against B. subtilis, which was studied using atomic force microscopy. The cell wall of B. subtilis collapsed and the roughness increased upon treatment with trichokonin VI. Nanoindentation experiments revealed a progressive decrease in the stiffness of the cells. Furthermore, the membrane permeabilization effect of trichokonin VI on B. subtilis was monitored, and the results suggest that the leakage of intracellular materials is a possible mechanism of action for trichokonin VI, which led to alterations in the morphological and nanomechanical properties of B. subtilis.
Collapse
|
17
|
Ye S, Li H, Wei F, Jasensky J, Boughton AP, Yang P, Chen Z. Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change. J Am Chem Soc 2012; 134:6237-43. [PMID: 22420296 PMCID: PMC3328217 DOI: 10.1021/ja2110784] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes.
Collapse
Affiliation(s)
- Shuji Ye
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Hongchun Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Feng Wei
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Joshua Jasensky
- Department of Biophysics, University of Michigan, AnnArbor, MI 48109, USA
| | - Andrew P. Boughton
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| | - Pei Yang
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| | - Zhan Chen
- Department of Biophysics, University of Michigan, AnnArbor, MI 48109, USA
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| |
Collapse
|
18
|
Wilson MA, Wei C, Bjelkmar P, Wallace BA, Pohorille A. Molecular dynamics simulation of the antiamoebin ion channel: linking structure and conductance. Biophys J 2011; 100:2394-402. [PMID: 21575573 DOI: 10.1016/j.bpj.2011.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
Molecular-dynamics simulations were carried out to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistent with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive. The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be nonconducting. The conductance of the hexamer was estimated to be 115 ± 34 pS and 74 ± 20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis, we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K⁺ and Cl⁻ with their first solvation shells intact. The free energy barrier encountered by K⁺ is only 2.2 kcal/mol whereas Cl⁻ encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics.
Collapse
Affiliation(s)
- Michael A Wilson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
19
|
Ye S, Nguyen KT, Chen Z. Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ. J Phys Chem B 2010; 114:3334-40. [PMID: 20163089 PMCID: PMC2844632 DOI: 10.1021/jp911174d] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Structures of membrane-associated peptides and molecular interactions between peptides and cell membrane bilayers govern biological functions of these peptides. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study such structures and interactions at the molecular level. In this research, SFG has been applied, supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), to characterize the interactions between alamethicin (a model for larger channel proteins) and different lipid bilayers in the absence of membrane potential. The orientation of alamethicin in lipid bilayers has been determined using SFG amide I spectra detected with different polarization combinations. It was found that alamethicin adopts a mixed alpha-helical and 3(10)-helical structure in fluid-phase lipid bilayers. The helix (mainly alpha-helix) at the N-terminus tilts at about 63 degrees versus the surface normal in a fluid-phase 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine-1,1,2,2-d4-N,N,N-trimethyl-d9 (d-DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. The 3(10)-helix at the C-terminus (beyond the Pro14 residue) tilts at about 43 degrees versus the surface normal. This is the first time to apply SFG to study a 3(10)-helix experimentally. When interacting with a gel-phase lipid bilayer, alamethicin lies down on the gel-phase bilayer surface or aggregates or both, which does not have significant insertion into the lipid bilayer.
Collapse
Affiliation(s)
- Shuji Ye
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, P.R. China 230026
| | - Khoi Tan Nguyen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Ye S, Nguyen KT, Le Clair SV, Chen Z. In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy. J Struct Biol 2009; 168:61-77. [PMID: 19306928 PMCID: PMC2753614 DOI: 10.1016/j.jsb.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 12/11/2022]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study the molecular structures of surfaces and interfaces in different chemical environments. This review summarizes recent SFG studies on hybrid bilayer membranes and substrate-supported lipid monolayers and bilayers, the interaction between peptides/proteins and lipid monolayers/bilayers, and bilayer perturbation induced by peptides/proteins. To demonstrate the ability of SFG to determine the orientations of various secondary structures, studies on the interactions between different peptides/proteins (melittin, G proteins, alamethicin, and tachyplesin I) and lipid bilayers are discussed. Molecular level details revealed by SFG in these studies show that SFG can provide a unique understanding on the interactions between a lipid monolayer/bilayer and peptides/proteins in real time, in situ and without any exogenous labeling.
Collapse
Affiliation(s)
- Shuji Ye
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Khoi Tan Nguyen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | | | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
21
|
Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study. Biophys J 2008; 95:4337-47. [PMID: 18676652 DOI: 10.1529/biophysj.108.133330] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a simulation study where different resolutions, namely coarse-grained (CG) and all-atom (AA) molecular dynamics simulations, are used sequentially to combine the long timescale reachable by CG simulations with the high resolution of AA simulations, to describe the complete processes of peptide aggregation and pore formation by alamethicin peptides in a hydrated lipid bilayer. In the 1-micros CG simulations the peptides spontaneously aggregate in the lipid bilayer and exhibit occasional transitions between the membrane-spanning and the surface-bound configurations. One of the CG systems at t = 1 micros is reverted to an AA representation and subjected to AA simulation for 50 ns, during which water molecules penetrate the lipid bilayer through interactions with the peptide aggregates, and the membrane starts leaking water. During the AA simulation significant deviations from the alpha-helical structure of the peptides are observed, however, the size and arrangement of the clusters are not affected within the studied time frame. Solid-state NMR experiments designed to match closely the setup used in the molecular dynamics simulations provide strong support for our finding that alamethicin peptides adopt a diverse set of configurations in a lipid bilayer, which is in sharp contrast to the prevailing view of alamethicin oligomers formed by perfectly aligned helical alamethicin peptides in a lipid bilayer.
Collapse
|
22
|
Gammie AE, Erdeniz N, Beaver J, Devlin B, Nanji A, Rose MD. Functional characterization of pathogenic human MSH2 missense mutations in Saccharomyces cerevisiae. Genetics 2007; 177:707-21. [PMID: 17720936 PMCID: PMC2034637 DOI: 10.1534/genetics.107.071084] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with defects in DNA mismatch repair. Mutations in either hMSH2 or hMLH1 underlie the majority of HNPCC cases. Approximately 25% of annotated hMSH2 disease alleles are missense mutations, resulting in a single change out of 934 amino acids. We engineered 54 missense mutations in the cognate positions in yeast MSH2 and tested for function. Of the human alleles, 55% conferred strong defects, 8% displayed intermediate defects, and 38% showed no defects in mismatch repair assays. Fifty percent of the defective alleles resulted in decreased steady-state levels of the variant Msh2 protein, and 49% of the Msh2 variants lost crucial protein-protein interactions. Finally, nine positions are predicted to influence the mismatch recognition complex ATPase activity. In summary, the missense mutations leading to loss of mismatch repair defined important structure-function relationships and the molecular analysis revealed the nature of the deficiency for Msh2 variants expressed in the tumors. Of medical relevance are 15 human alleles annotated as pathogenic in public databases that conferred no obvious defects in mismatch repair assays. This analysis underscores the importance of functional characterization of missense alleles to ensure that they are the causative factor for disease.
Collapse
Affiliation(s)
- Alison E Gammie
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Poirier L, Quiniou F, Ruiz N, Montagu M, Amiard JC, Pouchus YF. Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:254-62. [PMID: 17582518 DOI: 10.1016/j.aquatox.2007.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Abstract
Peptaibols are known membrane-modifying peptides that were recently detected in marine sediments and mussels collected from a shellfish farming area (Fier d'Ars, Atlantic coast, France). In this investigation, embryotoxicity bioassays with oysters (Crassostrea gigas) were performed to assess acute toxicity of alamethicin and different groups of peptaibols produced by a Trichoderma longibrachiatum strain isolated from marine environment. C. gigas embryos appeared very sensitive to all the metabolites examined with higher toxic effects for long-sequence peptides (EC50 ranging from 10 to 64 nM). D-shaped larvae with mantle abnormality were particularly noticed when peptaibol concentrations increased. Disturbances of embryogenesis were also observed following exposure to organic and aqueous extract of sediments from Fier d'Ars (EC50=42.4 and 6.6 g L(-1) dry weight, respectively). Although peptaibol concentrations measured in these sediments could explain only a part of the toxic effects observed, this study suggests that these mycotoxins can induce larval abnormalities in a population of exposed animals at environmentally realistic concentrations. Their detection in coastal areas devoted to bivalve culture should be taken into account.
Collapse
Affiliation(s)
- Laurence Poirier
- Université de Nantes, Nantes Atlantique Universités, SMAB EA2160, Faculté de pharmacie, 1 rue Gaston Veil-BP 53508, Nantes F-44000, France.
| | | | | | | | | | | |
Collapse
|