1
|
Sharma L, Bisht GS. Short Antimicrobial Peptides: Therapeutic Potential and Recent Advancements. Curr Pharm Des 2023; 29:3005-3017. [PMID: 38018196 DOI: 10.2174/0113816128248959231102114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
There has been a lot of interest in antimicrobial peptides (AMPs) as potential next-generation antibiotics. They are components of the innate immune system. AMPs have broad-spectrum action and are less prone to resistance development. They show potential applications in various fields, including medicine, agriculture, and the food industry. However, despite the good activity and safety profiles, AMPs have had difficulty finding success in the clinic due to their various limitations, such as production cost, proteolytic susceptibility, and oral bioavailability. To overcome these flaws, a number of solutions have been devised, one of which is developing short antimicrobial peptides. Short antimicrobial peptides do have an advantage over longer peptides as they are more stable and do not collapse during absorption. They have generated a lot of interest because of their evolutionary success and advantageous properties, such as low molecular weight, selective targets, cell or organelles with minimal toxicity, and enormous therapeutic potential. This article provides an overview of the development of short antimicrobial peptides with an emphasis on those with ≤ 30 amino acid residues as a potential therapeutic agent to fight drug-resistant microorganisms. It also emphasizes their applications in many fields and discusses their current state in clinical trials.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|
2
|
Bartels EJH, Dekker D, Amiche M. Dermaseptins, Multifunctional Antimicrobial Peptides: A Review of Their Pharmacology, Effectivity, Mechanism of Action, and Possible Future Directions. Front Pharmacol 2019; 10:1421. [PMID: 31849670 PMCID: PMC6901996 DOI: 10.3389/fphar.2019.01421] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Dermaseptins are a group of α-helical shaped polycationic peptides isolated from the Hylid frogs, with antimicrobial effects against bacteria, parasites, protozoa, viruses in vitro. Besides, anti-tumor effects have been demonstrated. However, few animal experiments and no clinical trials have been conducted thus far. This review summarizes the current knowledge on the pharmacology, ethno pharmacology, effectivity against infectious pathogens and tumors cells and the mechanism of action of the Dermaseptins. Future research should focus on further clarification of the mechanisms of action, the effectivity of Dermaseptins against several cancer cell lines and their applicability in humans.
Collapse
Affiliation(s)
| | - Douwe Dekker
- Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mohamed Amiche
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| |
Collapse
|
3
|
Anti-leishmanial activity of the antimicrobial peptide DRS 01 observed in Leishmania infantum (syn. Leishmania chagasi) cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:483-90. [DOI: 10.1016/j.nano.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/08/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022]
|
4
|
Salay LC, Nobre TM, Colhone MC, Zaniquelli MED, Ciancaglini P, Stabeli RG, Leite JRSA, Zucolotto V. Dermaseptin 01 as antimicrobial peptide with rich biotechnological potential: study of peptide interaction with membranes containing Leishmania amazonensis lipid-rich extract and membrane models. J Pept Sci 2011; 17:700-7. [PMID: 21805539 DOI: 10.1002/psc.1392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/27/2011] [Accepted: 06/10/2011] [Indexed: 01/26/2023]
Abstract
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA- KAAGQAALGAL-NH(2) , DS 01) with phospholipid (PL) monolayers comprising (i) a lipid-rich extract of Leishmania amazonensis (LRE-La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid-air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE-La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 µg/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE-La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis.
Collapse
Affiliation(s)
- Luiz C Salay
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, 13560-970 São Carlos, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Whitfield T, Miles AJ, Scheinost JC, Offer J, Wentworth Jr P, Dwek RA, Wallace BA, Biggin PC, Zitzmann N. The influence of different lipid environments on the structure and function of the hepatitis C virus p7 ion channel protein. Mol Membr Biol 2011; 28:254-64. [DOI: 10.3109/09687688.2011.581253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Thomas Whitfield
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford
| | - Andrew J. Miles
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London
| | - Johanna C. Scheinost
- The Scripps-Oxford Laboratory, Department of Biochemistry, University of Oxford, Oxford
| | - John Offer
- The Scripps-Oxford Laboratory, Department of Biochemistry, University of Oxford, Oxford
- National Institute for Medical Research, London
| | - Paul Wentworth Jr
- The Scripps-Oxford Laboratory, Department of Biochemistry, University of Oxford, Oxford
| | - Raymond A. Dwek
- The Scripps-Oxford Laboratory, Department of Biochemistry, University of Oxford, Oxford
| | - B. A. Wallace
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London
| | - Philip C. Biggin
- Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford
| |
Collapse
|
6
|
Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1772-81. [DOI: 10.1016/j.bbamem.2009.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/02/2009] [Accepted: 05/04/2009] [Indexed: 11/29/2022]
|
7
|
Galanth C, Abbassi F, Lequin O, Ayala-Sanmartin J, Ladram A, Nicolas P, Amiche M. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Biochemistry 2009; 48:313-27. [PMID: 19113844 DOI: 10.1021/bi802025a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dermaseptin B2 (Drs B2) is a 33-residue-long cationic, alpha-helical antimicrobial peptide endowed with membrane-damaging activity against a broad spectrum of microorganisms, including bacteria, yeasts, fungi, and protozoa, but its precise mechanism of action remained ill-defined. A detailed characterization of peptide-membrane interactions of Drs B2 was undertaken in comparison with a C-terminal truncated analogue, [1-23]-Drs B2, that was virtually inactive on bacteria despite retaining the cationic charge of the full-length peptide. Both peptides were tested on living cells using membrane permeabilization assays and on large unilamellar and multilamellar phospholipid vesicles composed of binary lipid mixtures by dye leakage assay, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry and also on SDS micelles using NMR spectroscopy. The results indicate that Drs B2 induces a strong perturbation of anionic lipid bilayers, resides at the hydrocarbon core-water interface, parallel to the plane of the membrane, and interacts preferentially with the polar head groups and glycerol backbone region of the anionic phospholipids, as well as the region of the lipid acyl chain near the bilayer surface. The interfacial location of Drs B2 induces a positive curvature of the bilayer and clustering of anionic lipids, consistent with a carpet mechanism, that may lead to the formation of mixed peptide-phospholipid toroidal, transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. In constrast, the truncated [1-23]-Drs B2 analogue interacts at the head group level without penetrating and perturbing the hydrophobic core of the bilayer. NMR study in SDS micelles showed that [1-23]-Drs B2 adopts a well-defined helix encompassing residues 2-20, whereas Drs B2 was previously found to adopt helical structures interrupted around the Val(9)-Gly(10) segment. Thus the antibacterial activity of Drs B2 depends markedly on a threshold number of hydrophobic residues to be present on both extremities of the helix. In a membrane environment with a strong positive curvature strain, Drs B2 can adopt a flexible helix-hinge-helix structure that facilitates the concomitant insertion of the strongly hydrophobic N- and C-termini of the peptide into the acyl core of the membrane.
Collapse
Affiliation(s)
- Cécile Galanth
- Peptidome de la Peau des Amphibiens, UPMC Universite Paris 06, CNRS FRE 2852, F-75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
Synthesis and antimicrobial activity of dermaseptin S1 analogues. Bioorg Med Chem 2008; 16:8205-9. [PMID: 18676150 DOI: 10.1016/j.bmc.2008.07.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/04/2008] [Accepted: 07/16/2008] [Indexed: 11/21/2022]
Abstract
Dermaseptins are peptides found in the skin secretions of Phyllomedusinae frogs. These peptides exert lytic action on some microorganisms without substantial haemolysis. In an attempt to understand the antimicrobial activity of these peptides we designed several dermaseptin S1 (ALWKTMLKKLGTMALHAGKAALGAAADTISQGTQ) (DS1) analogues. All peptides were tested on the growth of prokaryotic (Gram-positive and Gram-negative bacteria) and eukaryotic (the yeast Candida albicans and the protozoon Leishmania major) organisms. Our data showed a dose-dependent killing effect by most DS1 derivatives. Maximal antibacterial activity was displayed by a 16-mer peptide that was more active than native DS1.
Collapse
|
9
|
Mereuta L, Luchian T, Park Y, Hahm KS. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2-20) antimicrobial peptide. Biochem Biophys Res Commun 2008; 373:467-72. [PMID: 18433718 DOI: 10.1016/j.bbrc.2008.04.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
In this study, we employed electrophysiology experiments carried out at the single-molecule level to study the mechanism of action of the HPA3 peptide, an analogue of the linear antimicrobial peptide, HP(2-20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein. Amplitude analysis of currents fluctuations induced by HPA3 peptide at various potentials in zwitterionic lipid membranes reveal the existence of reproducible conductive states in the stochastic behavior of such events, which directly supports the existence of transmembrane pores induced the peptide. From our data recorded both at the single-pore and macroscopic levels, we propose that the HPA3 pore formation is electrophoretically facilitated by trans-negative transmembrane potentials, and HPA3 peptides translocate into the trans monolayers after forming the pores. We present evidence according to which the decrease in the membrane dipole potential of a reconstituted lipid membranes leads to an augmentation of the membrane activity of HPA3 peptides, and propose that a lower electric dipole field of the interfacial region of the membrane caused by phloretin facilitates the surface-bound HPA3 peptides to break free from one leaflet of the membrane, insert into the membrane and contribute to pore formation spanning the entire thickness of the membrane.
Collapse
Affiliation(s)
- Loredana Mereuta
- Alexandru I. Cuza University, Faculty of Physics, Laboratory of Biophysics & Medical Physics, Blvd. King Carol I, No. 11, Iasi R-700506, Romania
| | | | | | | |
Collapse
|
10
|
Verly RM, Rodrigues MA, Daghastanli KRP, Denadai AML, Cuccovia IM, Bloch C, Frézard F, Santoro MM, Piló-Veloso D, Bemquerer MP. Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides 2008; 29:15-24. [PMID: 18083275 DOI: 10.1016/j.peptides.2007.10.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/19/2007] [Accepted: 10/22/2007] [Indexed: 11/26/2022]
Abstract
DD K is an antimicrobial peptide previously isolated from the skin of the amphibian Phyllomedusa distincta. The effect of cholesterol on synthetic DD K binding to egg lecithin liposomes was investigated by intrinsic fluorescence of tryptophan residue, measurements of kinetics of 5(6)-carboxyfluorescein (CF) leakage, dynamic light scattering and isothermal titration microcalorimetry. An 8 nm blue shift of tryptophan maximum emission fluorescence was observed when DD K was in the presence of lecithin liposomes compared to the value observed for liposomes containing 43 mol% cholesterol. The rate and the extent of CF release were also significantly reduced by the presence of cholesterol. Dynamic light scattering showed that lecithin liposome size increase from 115 to 140 nm when titrated with DD K but addition of cholesterol reduces the liposome size increments. Isothermal titration microcalorimetry studies showed that DD K binding both to liposomes containing cholesterol as to liposomes devoid of it is more entropically than enthalpically favored. Nevertheless, the peptide concentration necessary to furnish an adjustable titration curve is much higher for liposomes containing cholesterol at 43 mol% (2 mmol L(-1)) than in its absence (93 micromol L(-1)). Apparent binding constant values were 2160 and 10,000 L mol(-1), respectively. The whole data indicate that DD K binding to phosphatidylcholine liposomes is significantly affected by cholesterol, which contributes to explain the low hemolytic activity of the peptide.
Collapse
Affiliation(s)
- Rodrigo M Verly
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627, P.O. Box 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The development and antimicrobial properties of peptaibiotics and peptaibols are discussed. Also, the role of emerging peptaibol analogues, of alamethicin, e.g., harzianins HC, trichotoxin, and antiamoebin, is outlined.
Collapse
Affiliation(s)
- Hervé Duclohier
- UMR 6187 CNRS, Université de Poitiers, Pôle Biologie Santé, Poitiers, France.
| |
Collapse
|
12
|
Henriques S, Melo M, Castanho M. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 2006; 399:1-7. [PMID: 16956326 PMCID: PMC1570158 DOI: 10.1042/bj20061100] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Manuel Nuno Melo
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Miguel A. R. B. Castanho
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisbon, Portugal
- To whom correspondence should be addressed (email )
| |
Collapse
|