1
|
Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci 2021; 12:5977-5993. [PMID: 33995995 PMCID: PMC8098664 DOI: 10.1039/d1sc00165e] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions (PPIs) are implicated in the majority of cellular processes by enabling and regulating the function of individual proteins. Thus, PPIs represent high-value, but challenging targets for therapeutic intervention. The development of constrained peptides represents an emerging strategy to generate peptide-based PPI inhibitors, typically mediated by α-helices. The approach can confer significant benefits including enhanced affinity, stability and cellular penetration and is ingrained in the premise that pre-organization simultaneously pays the entropic cost of binding, prevents a peptide from adopting a protease compliant β-strand conformation and shields the hydrophilic amides from the hydrophobic membrane. This conceptual blueprint for the empirical design of peptide-based PPI inhibitors is an exciting and potentially lucrative way to effect successful PPI inhibitor drug-discovery. However, a plethora of more subtle effects may arise from the introduction of a constraint that include changes to binding dynamics, the mode of recognition and molecular properties. In this review, we summarise the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour across a range of constraining chemistries and targets, to highlight the tremendous success that has been achieved with constrained peptides alongside emerging design opportunities and challenges.
Collapse
Affiliation(s)
- Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Nanjing 210023 Jiangsu China
| | - Robert S Dawber
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Peiyu Zhang
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Martin Walko
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
2
|
Kuhn B, Picollo F, Carabelli V, Rispoli G. Advanced real-time recordings of neuronal activity with tailored patch pipettes, diamond multi-electrode arrays and electrochromic voltage-sensitive dyes. Pflugers Arch 2020; 473:15-36. [PMID: 33047171 PMCID: PMC7782438 DOI: 10.1007/s00424-020-02472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/03/2022]
Abstract
To understand the working principles of the nervous system is key to figure out its electrical activity and how this activity spreads along the neuronal network. It is therefore crucial to develop advanced techniques aimed to record in real time the electrical activity, from compartments of single neurons to populations of neurons, to understand how higher functions emerge from coordinated activity. To record from single neurons, a technique will be presented to fabricate patch pipettes able to seal on any membrane with a single glass type and whose shanks can be widened as desired. This dramatically reduces access resistance during whole-cell recording allowing fast intracellular and, if required, extracellular perfusion. To simultaneously record from many neurons, biocompatible probes will be described employing multi-electrodes made with novel technologies, based on diamond substrates. These probes also allow to synchronously record exocytosis and neuronal excitability and to stimulate neurons. Finally, to achieve even higher spatial resolution, it will be shown how voltage imaging, employing fast voltage-sensitive dyes and two-photon microscopy, is able to sample voltage oscillations in the brain spatially resolved and voltage changes in dendrites of single neurons at millisecond and micrometre resolution in awake animals.
Collapse
Affiliation(s)
- Bernd Kuhn
- Optical Neuroimaging Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125, Torino, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Giorgio Rispoli
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
3
|
Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm 2020; 586:119531. [PMID: 32540348 DOI: 10.1016/j.ijpharm.2020.119531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic form, and the augmentation of activity by surface conjugation of peptide ligands. The review is subdivided into three main sections, of which the first describes the antimicrobial activity of inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial strains. The second section highlights the range of antimicrobial peptides and the drug resistance strategies employed by bacterial species to counter lethality. The final part discusses the role of antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that show resistance. General strategies for the preparation of antimicrobial peptides and their conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of targeting ligands, the nanomaterial becomes able to differentiate between bacterial and mammalian cells and, thus, reduce side effects. Moreover, peptide conjugation to the surface of a nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and improvements in biocompatibility.
Collapse
|
4
|
Salnikov ES, De Zotti M, Bobone S, Mazzuca C, Raya J, Siano AS, Peggion C, Toniolo C, Stella L, Bechinger B. Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. Chembiochem 2019; 20:2141-2150. [PMID: 31125169 DOI: 10.1002/cbic.201900263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Å apart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Jesus Raya
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria UNL, Ruta Nacional N° 168, Km 472, Santa Fe, 3000, Argentina
| | - Cristina Peggion
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Burkhard Bechinger
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
5
|
Manzo G, Ferguson PM, Gustilo VB, Hind CK, Clifford M, Bui TT, Drake AF, Atkinson RA, Sutton JM, Batoni G, Lorenz CD, Phoenix DA, Mason AJ. Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Sci Rep 2019; 9:1385. [PMID: 30718667 PMCID: PMC6362004 DOI: 10.1038/s41598-018-37630-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a potential source of new molecules to counter the increase in antimicrobial resistant infections but a better understanding of their properties is required to understand their native function and for effective translation as therapeutics. Details of the mechanism of their interaction with the bacterial plasma membrane are desired since damage or penetration of this structure is considered essential for AMPs activity. Relatively modest modifications to AMPs primary sequence can induce substantial changes in potency and/or spectrum of activity but, hitherto, have not been predicted to substantially alter the mechanism of interaction with the bacterial plasma membrane. Here we use a combination of molecular dynamics simulations, circular dichroism, solid-state NMR and patch clamp to investigate the extent to which temporin B and its analogues can be distinguished both in vitro and in silico on the basis of their interactions with model membranes. Enhancing the hydrophobicity of the N-terminus and cationicity of the C-terminus in temporin B improves its membrane activity and potency against both Gram-negative and Gram-positive bacteria. In contrast, enhancing the cationicity of the N-terminus abrogates its ability to trigger channel conductance and renders it ineffective against Gram-positive bacteria while nevertheless enhancing its potency against Escherichia coli. Our findings suggest even closely related AMPs may target the same bacterium with fundamentally differing mechanisms of action.
Collapse
Affiliation(s)
- Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Philip M Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - V Benjamin Gustilo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Charlotte K Hind
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Melanie Clifford
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Tam T Bui
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, United Kingdom
| | - Alex F Drake
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, United Kingdom
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, United Kingdom
| | - J Mark Sutton
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Christian D Lorenz
- Department of Physics, King's College London, London, WC2R 2LS, United Kingdom
| | - David A Phoenix
- School of Applied Science, London South Bank University, 103 Borough Road, London, SE1 0AA, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| |
Collapse
|
6
|
Studying the Mechanism of Membrane Permeabilization Induced by Antimicrobial Peptides Using Patch-Clamp Techniques. Methods Mol Biol 2018; 1548:255-269. [PMID: 28013510 DOI: 10.1007/978-1-4939-6737-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many short peptides selectively permeabilize the bacteria plasma membrane, leading to their lyses and death: they are therefore a source of antibacterial molecules and inspiration for novel and more selective drugs, which may have wider application in many other fields, as selective anticancer drugs. In this chapter, it is presented a new method to investigate the permeabilization properties of antimicrobial peptides under strict physiological conditions, employing the patch-clamp technique coupled to a fast perfusion system.
Collapse
|
7
|
Salnikov ES, Raya J, De Zotti M, Zaitseva E, Peggion C, Ballano G, Toniolo C, Raap J, Bechinger B. Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR. Biophys J 2017; 111:2450-2459. [PMID: 27926846 DOI: 10.1016/j.bpj.2016.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022] Open
Abstract
Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Jesus Raya
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Ekaterina Zaitseva
- Department of Membrane Physiology and Technology, Institute of Physiology, University of Freiburg, Freiburg, Germany
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Gema Ballano
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France.
| |
Collapse
|
8
|
Uptake Mechanism of Cell-Penetrating Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:255-264. [DOI: 10.1007/978-3-319-66095-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Bussalleu E, Sancho S, Briz MD, Yeste M, Bonet S. Do antimicrobial peptides PR-39, PMAP-36 and PMAP-37 have any effect on bacterial growth and quality of liquid-stored boar semen? Theriogenology 2016; 89:235-243. [PMID: 28043357 DOI: 10.1016/j.theriogenology.2016.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
The use of antimicrobial peptides (AMP) has become one of the most promising alternatives to the use of antibiotics (Abs) in semen extender's formulation to overcome the increasing bacterial resistance to antibiotics. However, AMP may impair boar sperm quality, so that their deleterious effects might be higher than their effectiveness against bacteria. Thus, the aim of this study was to determine whether three different AMP, the proline-arginine-rich antimicrobial peptide PR-39 (PR-39), and the porcine myeloid antimicrobial peptides 36 (PMAP-36) and 37 (PMAP-37) had any effect upon boar sperm quality and bacterial growth. For this purpose, three different concentrations of each peptide (1 μM, 10 μM and 20 μM for PR-39 and 0.5 μM, 1 μM and 3 μM for PMAP-36 and PMAP-37) were added to 2 mL of a pool of extended semen with BTS without Abs; two controls, one without AMPs and Abs, and the other with Abs only were used for each peptide (n = 3). Total (TMOT) and progressive (PMOT) sperm motility, sperm viability and bacterial concentration were assessed before the addition of each AMP or Abs and at 1, 3, 6, 8 and 10 days post-addition. For each AMP, results revealed a drop in the TMOT and PMOT in all treatments and controls. In regard to sperm viability, while PR-39 at 10 μM maintained it in values similar to those of the control with Abs and PMAP-36 kept also the sperm viability in a similar fashion to the treatment with Abs, PMAP-37 was more effective in keeping sperm viability than controls (P < 0.05). Whereas PR-39 at 20 μM and PMAP-37 at 3 μM were quite effective in controlling bacterial load, PMAP-36 did not avoid bacterial growth at any concentration tested. In conclusion, taking all results together, PMAP-37 seems to be a suitable candidate to replace Abs in extended semen, as it hardly impairs sperm viability and controls the bacterial load. Nevertheless, further studies are still required to improve its effectiveness.
Collapse
Affiliation(s)
- Eva Bussalleu
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Catalonia, Spain.
| | - Sílvia Sancho
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Maria D Briz
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Catalonia, Spain
| |
Collapse
|
10
|
Festa M, Lagostena L, Carpaneto A. Using the plant vacuole as a biological system to investigate the functional properties of exogenous channels and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:607-12. [PMID: 26431786 DOI: 10.1016/j.bbamem.2015.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/31/2015] [Accepted: 09/25/2015] [Indexed: 01/15/2023]
Abstract
Plant cells possess a large intracellular compartment that animal cells do not, the central vacuole, which has been investigated for a long time. The central vacuole can occupy up to 90% of the cellular volume and, differently from intracellular organelles from animal cells such as lysosomes or endosomes, it is easy to isolate. Because of its large dimension (up to 40 μm diameter) it can be successfully studied using the classical patch-clamp technique. Following the idea that the vacuolar membrane could be used as a convenient model to characterize the functional properties of channel-forming peptides, we verified that the phytotoxic lipodepsipeptide Syringopeptin 25A from Pseudomonas syringae pv syringae was able to form ionic pores in sugar beet vacuoles and we performed a detailed biophysical analysis. Recently, we extended the use of plant vacuoles to the expression and functional characterization of animal intracellular transporters, namely rat CLC-7, and channels, i.e. human TPC2. Since endo-lysosomal transporters and channels are still largely unexplored, principally because their intracellular localization renders them difficult to study, we believe that this novel approach will prove to be a powerful system for the investigation of the molecular mechanisms of exogenous transporters and channels. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- M Festa
- Institute of Biophysics (IBF), CNR, Via De Marini 6, 16149 Genova, Italy
| | - L Lagostena
- Institute of Biophysics (IBF), CNR, Via De Marini 6, 16149 Genova, Italy
| | - A Carpaneto
- Institute of Biophysics (IBF), CNR, Via De Marini 6, 16149 Genova, Italy.
| |
Collapse
|
11
|
Mechanistic insight into CM18-Tat11 peptide membrane-perturbing action by whole-cell patch-clamp recording. Molecules 2014; 19:9228-39. [PMID: 24991756 PMCID: PMC6271366 DOI: 10.3390/molecules19079228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/17/2022] Open
Abstract
The membrane-destabilization properties of the recently-introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1–7 of cecropin-A, 2–12 of melittin, and 47–57 of HIV-1 Tat protein) are investigated in CHO-K1 cells by using the whole-cell configuration of the patch-clamp technique. CM18-Tat11, CM18, and Tat11 peptides are administered to the cell membrane with a computer-controlled micro-perfusion system. CM18-Tat11 induces irreversible cell-membrane permeabilization at concentrations (≥4 µM) at which CM18 triggers transient pore formation, and Tat11 does not affect membrane integrity. We argue that the addition of the Tat11 module to CM18 is able to trigger a shift in the mechanism of membrane destabilization from “toroidal” to “carpet”, promoting a detergent-like membrane disruption. Collectively, these results rationalize previous observations on CM18-Tat11 delivery properties that we believe can guide the engineering of new modular peptides tailored to specific cargo-delivery applications.
Collapse
|
12
|
Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. PLoS One 2014; 9:e86364. [PMID: 24466055 PMCID: PMC3897731 DOI: 10.1371/journal.pone.0086364] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/08/2013] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial peptides (AMPs), which present in the non-specific immune system of organism, are amongst the most promising candidates for the development of novel antimicrobials. The modification of naturally occurring AMPs based on their residue composition and distribution is a simple and effective strategy for optimization of known AMPs. In this study, a series of truncated and residue-substituted derivatives of antimicrobial peptide PMAP-36 were designed and synthesized. The 24-residue truncated peptide, GI24, displayed antimicrobial activity comparable to the mother peptide PMAP-36 with MICs ranging from 1 to 4 µM, which is lower than the MICs of bee venom melittin. Although GI24 displayed high antimicrobial activity, its hemolytic activity was much lower than melittin, suggesting that GI24 have optimal cell selectivity. In addition, the crucial site of GI24 was identified through single site-mutation. An amino acid with high hydrophobicity at position 23 played an important role in guaranteeing the high antimicrobial activity of GI24. Then, lipid vesicles and whole bacteria were employed to investigate the membrane-active mechanisms. Membrane-simulating experiments showed that GI24 interacted strongly with negatively charged phospholipids and weakly with zwitterionic phospholipids, which corresponded well with the data of its biological activities. Membrane permeabilization and flow cytometry provide the evidence that GI24 killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. GI24 resulted in greater cell morphological changes and visible pores on cell membrane as determined using scanning electron microscopy (SEM) and transmission electron microscope (TEM). Taken together, the peptide GI24 may provide a promising antimicrobial agent for therapeutic applications against the frequently-encountered bacteria.
Collapse
|
13
|
Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B. Recent results in alamethicin research. Chem Biodivers 2013; 10:744-71. [PMID: 23681724 DOI: 10.1002/cbdv.201200390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 12/20/2022]
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged.
| | | | | | | | | |
Collapse
|
14
|
Becucci L, Maran F, Guidelli R. Probing membrane permeabilization by the antibiotic lipopeptaibol trichogin GA IV in a tethered bilayer lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1656-62. [DOI: 10.1016/j.bbamem.2012.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/16/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
15
|
Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 2012; 51:149-77. [DOI: 10.1016/j.plipres.2011.12.005] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 2010; 96:86-100. [PMID: 18835909 DOI: 10.1529/biophysj.108.136242] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/03/2008] [Indexed: 11/18/2022] Open
Abstract
Ampullosporin A and alamethicin are two members of the peptaibol family of antimicrobial peptides. These compounds are produced by fungi and are characterized by a high content of hydrophobic amino acids, and in particular the alpha-tetrasubstituted amino acid residue ?-aminoisobutyric acid. Here ampullosporin A and alamethicin were uniformly labeled with (15)N, purified and reconstituted into oriented phophatidylcholine lipid bilayers and investigated by proton-decoupled (15)N and (31)P solid-state NMR spectroscopy. Whereas alamethicin (20 amino acid residues) adopts transmembrane alignments in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes the much shorter ampullosporin A (15 residues) exhibits comparable configurations only in thin membranes. In contrast the latter compound is oriented parallel to the membrane surface in 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine and POPC bilayers indicating that hydrophobic mismatch has a decisive effect on the membrane topology of these peptides. Two-dimensional (15)N chemical shift -(1)H-(15)N dipolar coupling solid-state NMR correlation spectroscopy suggests that in their transmembrane configuration both peptides adopt mixed alpha-/3(10)-helical structures which can be explained by the restraints imposed by the membranes and the bulky alpha-aminoisobutyric acid residues. The (15)N solid-state NMR spectra also provide detailed information on the helical tilt angles. The results are discussed with regard to the antimicrobial activities of the peptides.
Collapse
|
17
|
Salnikov E, Aisenbrey C, Vidovic V, Bechinger B. Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:258-65. [DOI: 10.1016/j.bbamem.2009.06.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/12/2009] [Accepted: 06/29/2009] [Indexed: 01/20/2023]
|
18
|
Milani A, Benedusi M, Aquila M, Rispoli G. Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane. Molecules 2009; 14:5179-88. [PMID: 20032884 PMCID: PMC6255091 DOI: 10.3390/molecules14125179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/04/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022] Open
Abstract
The pore forming properties of synthetic cecropin-melittin hybrid peptide (Acetyl-KWKLFKKIGAVLKVL-CONH2; CM15) were investigated by using photoreceptor rod outer segments (OS) isolated from frog retinae obtained by using the whole-cell configuration of the patch-clamp technique. CM15 was applied (and removed) to (from) the OS in ~50 ms with a computer-controlled microperfusion system. Once the main OS endogenous conductance was blocked with light, the OS membrane resistance was ≥1 GΩ, allowing high resolution, low-noise recordings. Different to alamethicines, CM15 produced voltage-independent membrane permeabilisation, repetitive peptide application caused a progressive permeabilisation increase, and no single-channel events were detected at low peptide concentrations. Collectively, these results indicate a toroidal mechanism of pore formation by CM15.
Collapse
Affiliation(s)
- Alberto Milani
- Dipartimento di Biologia ed Evoluzione, Sezione di Fisiologia e Biofisica, National Institute of Neuroscience and Neuroscience Center, Università di Ferrara, Via L. Borsari 46, I-44100 Ferrara, Italy.
| | | | | | | |
Collapse
|