1
|
Molecular Insights into Substrate Binding of the Outer Membrane Enzyme OmpT. Catalysts 2023. [DOI: 10.3390/catal13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The enzyme OmpT of the outer membrane of Escherichia coli shows proteolytic activity and cleaves peptides and proteins. Using molecular dynamics simulations in a fully hydrated lipid bilayer on a time scale of hundreds of nanoseconds, we draw a detailed atomic picture of substrate recognition in the OmpT-holo enzyme complex. Hydrogen bonds and salt bridges are essential for maintaining the integrity of the active site and play a central role for OmpT in recognizing its substrate. Electrostatic interactions are critical at all stages from approaching the substrate to docking at the active site. Computational alanine scanning based on the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) approach confirms the importance of multiple residues in the active site that form salt bridges. The substrate fluctuates along the axis of the β-barrel, which is associated with oscillations of the binding cleft formed by the residue pairs D210-H212 and D83-D85. Principal component analysis suggests that substrate and protein movements are correlated. We observe the transient presence of putative catalytic water molecules near the active site, which may be involved in the nucleophilic attack on the cleavable peptide bond of the substrate.
Collapse
|
2
|
Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of Gram-negative bacterial cell envelopes? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35294337 PMCID: PMC9558347 DOI: 10.1099/mic.0.001165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cell envelopes are compositionally complex and crowded and while highly dynamic in some areas, their molecular motion is very limited, to the point of being almost static in others. Therefore, it is no real surprise that studying them at high resolution across a range of temporal and spatial scales requires a number of different techniques. Details at atomistic to molecular scales for up to tens of microseconds are now within range for molecular dynamics simulations. Here we review how such simulations have contributed to our current understanding of the cell envelopes of Gram-negative bacteria.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Cyril Schroeder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
3
|
Saunders GM, Bruce Macdonald HE, Essex JW, Khalid S. Prediction of the Closed Conformation and Insights into the Mechanism of the Membrane Enzyme LpxR. Biophys J 2018; 115:1445-1456. [PMID: 30287112 PMCID: PMC6260217 DOI: 10.1016/j.bpj.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Covalent modification of outer membrane lipids of Gram-negative bacteria can impact the ability of the bacterium to develop resistance to antibiotics as well as modulating the immune response of the host. The enzyme LpxR from Salmonella typhimurium is known to deacylate lipopolysaccharide molecules of the outer membrane; however, the mechanism of action is unknown. Here, we employ molecular dynamics and Monte Carlo simulations to study the conformational dynamics and substrate binding of LpxR in representative outer membrane models as well as detergent micelles. We examine the roles of conserved residues and provide an understanding of how LpxR binds its substrate. Our simulations predict that the catalytic H122 must be Nε-protonated for a single water molecule to occupy the space between it and the scissile bond, with a free binding energy of -8.5 kcal mol-1. Furthermore, simulations of the protein within a micelle enable us to predict the structure of the putative "closed" protein. Our results highlight the need for including dynamics, a representative environment, and the consideration of multiple tautomeric and rotameric states of key residues in mechanistic studies; static structures alone do not tell the full story.
Collapse
Affiliation(s)
- Graham M Saunders
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | | | - Jonathan W Essex
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|
4
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
5
|
Konshina AG, Krylov NA, Efremov RG. Cardiotoxins: Functional Role of Local Conformational Changes. J Chem Inf Model 2017; 57:2799-2810. [DOI: 10.1021/acs.jcim.7b00395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anastasia G. Konshina
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 GSP, Moscow V-437, Russia
| | - Nikolay A. Krylov
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 GSP, Moscow V-437, Russia
- Joint
Supercomputer Center, Russian Academy of Sciences, Leninsky prospect,
32a, Moscow 119991, Russia
| | - Roman G. Efremov
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 GSP, Moscow V-437, Russia
| |
Collapse
|
6
|
Ortiz-Suarez ML, Samsudin F, Piggot TJ, Bond PJ, Khalid S. Full-Length OmpA: Structure, Function, and Membrane Interactions Predicted by Molecular Dynamics Simulations. Biophys J 2017; 111:1692-1702. [PMID: 27760356 PMCID: PMC5071624 DOI: 10.1016/j.bpj.2016.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/02/2022] Open
Abstract
OmpA is a multidomain protein found in the outer membranes of most Gram-negative bacteria. Despite a wealth of reported structural and biophysical studies, the structure-function relationships of this protein remain unclear. For example, it is still debated whether it functions as a pore, and the precise molecular role it plays in attachment to the peptidoglycan of the periplasm is unknown. The absence of a consensus view is partly due to the lack of a complete structure of the full-length protein. To address this issue, we performed molecular-dynamics simulations of the full-length model of the OmpA dimer proposed by Robinson and co-workers. The N-terminal domains were embedded in an asymmetric model of the outer membrane, with lipopolysaccharide molecules in the outer leaflet and phospholipids in the inner leaflet. Our results reveal a large dimerization interface within the membrane environment, ensuring that the dimer is stable over the course of the simulations. The linker is flexible, expanding and contracting to pull the globular C-terminal domain up toward the membrane or push it down toward the periplasm, suggesting a possible mechanism for providing mechanical stability to the cell. The external loops were more stabilized than was observed in previous studies due to the extensive dimerization interface and presence of lipopolysaccharide molecules in our outer-membrane model, which may have functional consequences in terms of OmpA adhesion to host cells. In addition, the pore-gating behavior of the protein was modulated compared with previous observations, suggesting a possible role for dimerization in channel regulation.
Collapse
Affiliation(s)
- Maite L Ortiz-Suarez
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Thomas J Piggot
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Syma Khalid
- School of Chemistry, Highfield Campus, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
7
|
Parkin J, Chavent M, Khalid S. Molecular Simulations of Gram-Negative Bacterial Membranes: A Vignette of Some Recent Successes. Biophys J 2016; 109:461-8. [PMID: 26244728 DOI: 10.1016/j.bpj.2015.06.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 01/05/2023] Open
Abstract
In the following review we use recent examples from the literature to discuss progress in the area of atomistic and coarse-grained molecular dynamics simulations of selected bacterial membranes and proteins, with a particular focus on Gram-negative bacteria. As structural biology continues to provide increasingly high-resolution data on the proteins that reside within these membranes, simulations have an important role to play in linking these data with the dynamical behavior and function of these proteins. In particular, in the last few years there has been significant progress in addressing the issue of biochemical complexity of bacterial membranes such that the heterogeneity of the lipid and protein components of these membranes are now being incorporated into molecular-level models. Thus, in future we can look forward to complementary data from structural biology and molecular simulations combining to provide key details of structure-dynamics-function relationships in bacterial membranes.
Collapse
Affiliation(s)
- Jamie Parkin
- School of Chemistry, University of Southampton, Southampton, UK
| | | | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK.
| |
Collapse
|
8
|
Reddy BL, Saier MH. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins. PLoS One 2016; 11:e0152733. [PMID: 27064789 PMCID: PMC4827864 DOI: 10.1371/journal.pone.0152733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications.
Collapse
Affiliation(s)
- Bhaskara L. Reddy
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Iordanov I, Renault M, Réat V, Bosshart PD, Engel A, Saurel O, Milon A. Dynamics of Klebsiella pneumoniae OmpA transmembrane domain: The four extracellular loops display restricted motion behavior in micelles and in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2344-53. [DOI: 10.1016/j.bbamem.2012.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
10
|
|
11
|
Luan B, Carr R, Caffrey M, Aksimentiev A. The effect of calcium on the conformation of cobalamin transporter BtuB. Proteins 2010; 78:1153-62. [PMID: 19927326 DOI: 10.1002/prot.22635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BtuB is a beta-barrel membrane protein that facilitates transport of cobalamin (vitamin B12) from the extracellular medium across the outer membrane of Escherichia coli. It is thought that binding of B12 to BtuB alters the conformation of its periplasm-exposed N-terminal residues (the TonB box), which enables subsequent binding of a TonB protein and leads to eventual uptake of B12 into the cytoplasm. Structural studies determined the location of the B12 binding site at the top of the BtuB's beta-barrel, surrounded by extracellular loops. However, the structure of the loops was found to depend on the method used to obtain the protein crystals, which-among other factors-differed in calcium concentration. Experimentally, calcium concentration was found to modulate the binding of the B12 substrate to BtuB. In this study, we investigate the effect of calcium ions on the conformation of the extracellular loops of BtuB and their possible role in B12 binding. Using all-atom molecular dynamics, we simulate conformational fluctuations of several X-ray structures of BtuB in the presence and absence of calcium ions. These simulations demonstrate that calcium ions can stabilize the conformation of loops 3-4, 5-6, and 15-16, and thereby prevent occlusion of the binding site. Furthermore, binding of calcium ions to extracellular loops of BtuB was found to enhance correlated motions in the BtuB structure, which is expected to promote signal transduction. Finally, we characterize conformation dynamics of the TonB box in different X-ray structures and find an interesting correlation between the stability of the TonB box structure and calcium binding.
Collapse
Affiliation(s)
- Binquan Luan
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
12
|
Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot JL. Solution NMR mapping of water-accessible residues in the transmembrane beta-barrel of OmpX. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:623-30. [PMID: 19639312 DOI: 10.1007/s00249-009-0513-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 12/11/2022]
Abstract
The atomic structure of OmpX, the smallest member of the bacterial outer membrane protein family, has been previously established by X-ray crystallography and NMR spectroscopy. In apparent conflict with electrophysiological studies, the lumen of its transmembrane beta-barrel appears too tightly packed with amino acid side chains to let any solute flow through. In the present study, high-resolution solution NMR spectra were obtained of OmpX kept water-soluble by either amphipol A8-35 or the detergent dihexanoylphosphatidylcholine. Hydrogen/deuterium exchange measurements performed after prolonged equilibration show that, whatever the surfactant used, some of the amide protons of the membrane-spanning region exchange much more readily than others, which likely reflects the dynamics of the barrel.
Collapse
Affiliation(s)
- Laurent J Catoire
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, CNRS/Université Paris-7, Institut de Biologie Physico-Chimique (FRC 550), 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
13
|
One membrane protein, two structures and six environments: a comparative molecular dynamics simulation study of the bacterial outer membrane protein PagP. Mol Membr Biol 2009; 26:205-14. [PMID: 19280380 DOI: 10.1080/09687680902788967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PagP is a bacterial outer membrane protein consisting of an 8 stranded transmembrane beta-barrel and an N-terminal alpha-helix. It is an enzyme which catalyses transfer of a palmitoyl chain from a phospholipid to lipid A. Molecular dynamics simulations have been used to compare the dynamic behaviour in simulations starting from two different structures (X-ray vs. NMR) and in six different environments (detergent micelles formed by dodecyl phosphocholine and by octyl glucoside, vs. four species of phospholipid bilayer). Analysis of interactions between the protein and its environment reveals the role played by the N-terminal alpha-helix, which interacts with the lipid headgroups to lock the PagP molecule into the bilayer. The PagP beta-barrel adopts a tilted orientation in lipid bilayers, facilitating access of lipid tails into the mouth of the central binding pocket. In simulations starting from the X-ray structure in lipid bilayer, the L1 and L2 loops move towards one another, leading to the formation of a putative active site by residues H33, D76 and S77 coming closer together.
Collapse
|
14
|
Abstract
Drug extrusion via efflux through a tripartite complex (an inner membrane pump, an outer membrane protein, and a periplasmic protein) is a widely used mechanism in Gram-negative bacteria. The outer membrane protein (TolC in Escherichia coli; OprM in Pseudomonas aeruginosa) forms a tunnel-like pore through the periplasmic space and the outer membrane. Molecular dynamics simulations of TolC have been performed, and are compared to simulations of Y362F/R367S mutant, and to simulations of its homolog OprM. The results reveal a complex pattern of conformation dynamics in the TolC protein. Two putative gate regions, located at either end of the protein, can be distinguished. These regions are the extracellular loops and the mouth of the periplasmic domain, respectively. The periplasmic gate has been implicated in the conformational changes leading from the closed x-ray structure to a proposed open state of TolC. Between the two gates, a peristaltic motion of the periplasmic domain is observed, which may facilitate transport of the solutes from one end of the tunnel to the other. The motions observed in the atomistic simulations are also seen in coarse-grained simulations in which the protein tertiary structure is represented by an elastic network model.
Collapse
|
15
|
Yang LW, Chng CP. Coarse-grained models reveal functional dynamics--I. Elastic network models--theories, comparisons and perspectives. Bioinform Biol Insights 2008; 2:25-45. [PMID: 19812764 PMCID: PMC2735964 DOI: 10.4137/bbi.s460] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this review, we summarize the progress on coarse-grained elastic network models (CG-ENMs) in the past decade. Theories were formulated to allow study of conformational dynamics in time/space frames of biological interest. Several highlighted models and their underlined hypotheses are introduced in physical depth. Important ENM offshoots, motivated to reproduce experimental data as well as to address the slow-mode-encoded configurational transitions, are also introduced. With the theoretical developments, computational cost is significantly reduced due to simplified potentials and coarse-grained schemes. Accumulating wealth of data suggest that ENMs agree equally well with experiment in describing equilibrium dynamics despite their distinct potentials and levels of coarse-graining. They however do differ in the slowest motional components that are essential to address large conformational changes of functional significance. The difference stems from the dissimilar curvatures of the harmonic energy wells described for each model. We also provide our views on the predictability of 'open to close' (open-->close) transitions of biomolecules on the basis of conformational selection theory. Lastly, we address the limitations of the ENM formalism which are partially alleviated by the complementary CG-MD approach, to be introduced in the second paper of this two-part series.
Collapse
Affiliation(s)
- Lee-Wei Yang
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
16
|
Molecular dynamics simulations and membrane protein structure quality. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:403-9. [PMID: 17960373 DOI: 10.1007/s00249-007-0225-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Despite a growing repertoire of membrane protein structures (currently approximately 120 unique structures), considerations of low resolution and crystallization in the absence of a lipid bilayer require the development of techniques to assess the global quality of membrane protein folds. This is also the case for assessment of, e.g. homology models of human membrane proteins based on structures of (distant) bacterial homologues. Molecular dynamics (MD) simulations may be used to help evaluate the quality of a membrane protein structure or model. We have used a structure of the bacterial ABC transporter MsbA which has the correct transmembrane helices but an incorrect handedness and topology of their packing to test simulation methods of quality assessment. An MD simulation of the MsbA model in a lipid bilayer is compared to a simulation of another bacterial ABC transporter, BtuCD. The latter structure has demonstrated good conformational stability in the same bilayer environment and over the same timescale (20 ns) as for the MsbA model simulation. A number of comparative analyses of the two simulations were performed to assess changes in the structural integrity of each protein. The results show a significant difference between the two simulations, chiefly due to the dramatic structural deformations of MsbA. We therefore propose that MD could become a useful quality control tool for membrane protein structural biology. In particular, it provides a way in which to explore the global conformational stability of a model membrane protein fold.
Collapse
|