1
|
Sorzano C, Vargas J, de la Rosa-Trevín J, Otón J, Álvarez-Cabrera A, Abrishami V, Sesmero E, Marabini R, Carazo J. A statistical approach to the initial volume problem in Single Particle Analysis by Electron Microscopy. J Struct Biol 2015; 189:213-9. [DOI: 10.1016/j.jsb.2015.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
|
2
|
Porcel E, Tillement O, Lux F, Mowat P, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Li S, Lacombe S. Gadolinium-based nanoparticles to improve the hadrontherapy performances. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1601-8. [PMID: 24846523 DOI: 10.1016/j.nano.2014.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/25/2014] [Accepted: 05/12/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. FROM THE CLINICAL EDITOR Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor.
Collapse
Affiliation(s)
- Erika Porcel
- Institut des Sciences Moléculaires d'Orsay, Université Paris Sud, CNRS, Orsay, France
| | - Olivier Tillement
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - François Lux
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Pierre Mowat
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Noriko Usami
- Photon Factory, Institute of Material Science, High Energy Accelerator Research Organization, Oho 1, Tsukuba, Ibaraki, Japan
| | - Katsumi Kobayashi
- Photon Factory, Institute of Material Science, High Energy Accelerator Research Organization, Oho 1, Tsukuba, Ibaraki, Japan
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
| | - Claude Le Sech
- Institut des Sciences Moléculaires d'Orsay, Université Paris Sud, CNRS, Orsay, France
| | - Sha Li
- Institut des Sciences Moléculaires d'Orsay, Université Paris Sud, CNRS, Orsay, France
| | - Sandrine Lacombe
- Institut des Sciences Moléculaires d'Orsay, Université Paris Sud, CNRS, Orsay, France.
| |
Collapse
|
3
|
Semiautomatic, high-throughput, high-resolution protocol for three-dimensional reconstruction of single particles in electron microscopy. Methods Mol Biol 2013; 950:171-93. [PMID: 23086876 DOI: 10.1007/978-1-62703-137-0_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In this chapter we describe the steps needed for reconstructing the three-dimensional structure of a macromolecular complex starting from its projections collected in electron micrographs. The concepts are shown through the use of Xmipp 3.0, a software suite specifically designed for the image processing of biological structures imaged with electron or X-ray microscopy. We illustrate the image processing workflow by applying it to the images of Bovine Papilloma virus published in Wolf et al. (Proc Natl Acad Sci USA 107:6298-6303, 2010). We show that in the case of high-quality, homogeneous datasets with a priori knowledge about the initial volume, we can have a high-resolution 3D reconstruction in less than 1 day using a computer cluster with only 32 processors.
Collapse
|
4
|
Processing of Transmission Electron Microscopy Images for Single-Particle Analysis of Macromolecular Complexes. Methods Cell Biol 2012. [DOI: 10.1016/b978-0-12-405914-6.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
Lavelle C, Praly E, Bensimon D, Le Cam E, Croquette V. Nucleosome-remodelling machines and other molecular motors observed at the single-molecule level. FEBS J 2011; 278:3596-607. [DOI: 10.1111/j.1742-4658.2011.08280.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Gallyamov MO. Scanning Force Microscopy as Applied to Conformational Studies in Macromolecular Research. Macromol Rapid Commun 2011; 32:1210-46. [DOI: 10.1002/marc.201100150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/06/2011] [Indexed: 01/17/2023]
|
7
|
Zhong S, Pochan DJ. Cryogenic Transmission Electron Microscopy for Direct Observation of Polymer and Small-Molecule Materials and Structures in Solution. POLYM REV 2010. [DOI: 10.1080/15583724.2010.493254] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
JONIĆ S, SORZANO C, BOISSET N. Comparison of single-particle analysis and electron tomography approaches: an overview. J Microsc 2008; 232:562-79. [DOI: 10.1111/j.1365-2818.2008.02119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Molecular structure of low density lipoprotein: current status and future challenges. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:145-58. [DOI: 10.1007/s00249-008-0368-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/28/2008] [Indexed: 01/01/2023]
|
10
|
Cottevieille M, Larquet E, Jonic S, Petoukhov MV, Caprini G, Paravisi S, Svergun DI, Vanoni MA, Boisset N. The subnanometer resolution structure of the glutamate synthase 1.2-MDa hexamer by cryoelectron microscopy and its oligomerization behavior in solution: functional implications. J Biol Chem 2008; 283:8237-49. [PMID: 18199747 DOI: 10.1074/jbc.m708529200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of the hexameric (alphabeta)(6) 1.2-MDa complex formed by glutamate synthase has been determined at subnanometric resolution by combining cryoelectron microscopy, small angle x-ray scattering, and molecular modeling, providing for the first time a molecular model of this complex iron-sulfur flavoprotein. In the hexameric species, interprotomeric alpha-alpha and alpha-beta contacts are mediated by the C-terminal domain of the alpha subunit, which is based on a beta helical fold so far unique to glutamate synthases. The alphabeta protomer extracted from the hexameric model is fully consistent with it being the minimal catalytically active form of the enzyme. The structure clarifies the electron transfer pathway from the FAD cofactor on the beta subunit, to the FMN on the alpha subunit, through the low potential [4Fe-4S](1+/2+) centers on the beta subunit and the [3Fe-4S](0/1+) cluster on the alpha subunit. The (alphabeta)(6) hexamer exhibits a concentration-dependent equilibrium with alphabeta monomers and (alphabeta)(2) dimers, in solution, the hexamer being destabilized by high ionic strength and, to a lower extent, by the reaction product NADP(+). Hexamerization seems to decrease the catalytic efficiency of the alphabeta protomer only 3-fold by increasing the K(m) values measured for l-Gln and 2-OG. However, it cannot be ruled out that the (alphabeta)(6) hexamer acts as a scaffold for the assembly of multienzymatic complexes of nitrogen metabolism or that it provides a means to regulate the activity of the enzyme through an as yet unknown ligand.
Collapse
Affiliation(s)
- Magali Cottevieille
- Département de Biologie Structurale, IMPMC-UMR 7590, CNRS, Universités Paris 6 et Paris 7, IPGP, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|