1
|
Zhao X, Alibhai D, Sun T, Khalil J, Hutchinson JL, Olzak K, Williams CM, Li Y, Sessions R, Cross S, Seager R, Aungraheeta R, Leard A, McKinnon CM, Phillips D, Zhang L, Poole AW, Banting G, Mundell SJ. Tetherin/BST2, a physiologically and therapeutically relevant regulator of platelet receptor signalling. Blood Adv 2021; 5:1884-1898. [PMID: 33792632 PMCID: PMC8045503 DOI: 10.1182/bloodadvances.2020003182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Abstract
The reactivity of platelets, which play a key role in the pathogenesis of atherothrombosis, is tightly regulated. The integral membrane protein tetherin/bone marrow stromal antigen-2 (BST-2) regulates membrane organization, altering both lipid and protein distribution within the plasma membrane. Because membrane microdomains have an established role in platelet receptor biology, we sought to characterize the physiological relevance of tetherin/BST-2 in those cells. To characterize the potential importance of tetherin/BST-2 to platelet function, we used tetherin/BST-2-/- murine platelets. In the mice, we found enhanced function and signaling downstream of a subset of membrane microdomain-expressing receptors, including the P2Y12, TP thromboxane, thrombin, and GPVI receptors. Preliminary studies in humans have revealed that treatment with interferon-α (IFN-α), which upregulates platelet tetherin/BST-2 expression, also reduces adenosine diphosphate-stimulated platelet receptor function and reactivity. A more comprehensive understanding of how tetherin/BST-2 negatively regulates receptor function was provided in cell line experiments, where we focused on the therapeutically relevant P2Y12 receptor (P2Y12R). Tetherin/BST-2 expression reduced both P2Y12R activation and trafficking, which was accompanied by reduced receptor lateral mobility specifically within membrane microdomains. In fluorescence lifetime imaging-Förster resonance energy transfer (FLIM-FRET)-based experiments, agonist stimulation reduced basal association between P2Y12R and tetherin/BST-2. Notably, the glycosylphosphatidylinositol (GPI) anchor of tetherin/BST-2 was required for both receptor interaction and observed functional effects. In summary, we established, for the first time, a fundamental role of the ubiquitously expressed protein tetherin/BST-2 in negatively regulating membrane microdomain-expressed platelet receptor function.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- School of Physiology, Pharmacology, and Neuroscience, and
| | - Dominic Alibhai
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy for Blood Disease, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; and
| | - Jawad Khalil
- School of Physiology, Pharmacology, and Neuroscience, and
| | | | - Kaya Olzak
- School of Physiology, Pharmacology, and Neuroscience, and
| | | | - Yong Li
- School of Physiology, Pharmacology, and Neuroscience, and
| | - Richard Sessions
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Richard Seager
- School of Physiology, Pharmacology, and Neuroscience, and
| | | | - Alan Leard
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | | | - David Phillips
- School of Physiology, Pharmacology, and Neuroscience, and
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy for Blood Disease, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; and
| | | | - George Banting
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
2
|
Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D. A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors. Front Pharmacol 2020; 11:1216. [PMID: 32903404 PMCID: PMC7435011 DOI: 10.3389/fphar.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein-activated Inwardly Rectifying K+-channel (GIRK) modulates heart rate and neuronal excitability. Following G-Protein Coupled Receptor (GPCR)-mediated activation of heterotrimeric G proteins (Gαβγ), opening of the channel is obtained by direct binding of Gβγ subunits. Interestingly, GIRKs are solely activated by Gβγ subunits released from Gαi/o-coupled GPCRs, despite the fact that all receptor types, for instance Gαq-coupled, are also able to provide Gβγ subunits. It is proposed that this specificity and fast kinetics of activation stem from pre-coupling (or pre-assembly) of proteins within this signaling cascade. However, many studies, including our own, point towards a diffusion-limited mechanism, namely collision coupling. Here, we set out to address this long-standing question by combining electrophysiology, imaging, and mathematical modeling. Muscarinic-2 receptors (M2R) and neuronal GIRK1/2 channels were coexpressed in Xenopus laevis oocytes, where we monitored protein surface expression, current amplitude, and activation kinetics. Densities of expressed M2R were assessed using a fluorescently labeled GIRK channel as a molecular ruler. We then incorporated our results, along with available kinetic data reported for the G-protein cycle and for GIRK1/2 activation, to generate a comprehensive mathematical model for the M2R-G-protein-GIRK1/2 signaling cascade. We find that, without assuming any irreversible interactions, our collision coupling kinetic model faithfully reproduces the rate of channel activation, the changes in agonist-evoked currents and the acceleration of channel activation by increased receptor densities.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Etay Artzy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Reem Handklo-Jamal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Uri Kahanovitch
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Hanna Parnas
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Department of Neonatology, Schneider Children's Hospital, Petah Tikva, Israel
| |
Collapse
|
3
|
Ilan Y. Overcoming randomness does not rule out the importance of inherent randomness for functionality. J Biosci 2019. [DOI: 10.1007/s12038-019-9958-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Role of Actin Cytoskeleton in Dynamics and Function of the Serotonin 1A Receptor. Biophys J 2019; 118:944-956. [PMID: 31606121 DOI: 10.1016/j.bpj.2019.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.
Collapse
Affiliation(s)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
5
|
Temporal dependence of shifts in mu opioid receptor mobility at the cell surface after agonist binding observed by single-particle tracking. Sci Rep 2019; 9:7297. [PMID: 31086197 PMCID: PMC6514008 DOI: 10.1038/s41598-019-43657-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
Agonist binding to the mu opioid receptor (MOR) results in conformational changes that allow recruitment of G-proteins, activation of downstream effectors and eventual desensitization and internalization, all of which could affect receptor mobility. The present study employed single particle tracking (SPT) of quantum dot labeled FLAG-tagged MORs to examine shifts in MOR mobility after agonist binding. FLAG-MORs on the plasma membrane were in both mobile and immobile states under basal conditions. Activation of FLAG-MORs with DAMGO caused an acute increase in the fraction of mobile MORs, and free portions of mobile tracks were partially dependent on interactions with G-proteins. In contrast, 10-minute exposure to DAMGO or morphine increased the fraction of immobile FLAG-MORs. While the decrease in mobility with prolonged DAMGO exposure corresponded to an increase in colocalization with clathrin, the increase in colocalization was present in both mobile and immobile FLAG-MORs. Thus, no single mobility state of the receptor accounted for colocalization with clathrin. These findings demonstrate that SPT can be used to track agonist-dependent changes in MOR mobility over time, but that the mobility states observed likely arise from a diverse set of interactions and will be most informative when examined in concert with particular downstream effectors.
Collapse
|
6
|
Martínez-Muñoz L, Rodríguez-Frade JM, Barroso R, Sorzano CÓS, Torreño-Pina JA, Santiago CA, Manzo C, Lucas P, García-Cuesta EM, Gutierrez E, Barrio L, Vargas J, Cascio G, Carrasco YR, Sánchez-Madrid F, García-Parajo MF, Mellado M. Separating Actin-Dependent Chemokine Receptor Nanoclustering from Dimerization Indicates a Role for Clustering in CXCR4 Signaling and Function. Mol Cell 2019; 70:106-119.e10. [PMID: 29625032 DOI: 10.1016/j.molcel.2018.02.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/08/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
A current challenge in cell motility studies is to understand the molecular and physical mechanisms that govern chemokine receptor nanoscale organization at the cell membrane, and their influence on cell response. Using single-particle tracking and super-resolution microscopy, we found that the chemokine receptor CXCR4 forms basal nanoclusters in resting T cells, whose extent, dynamics, and signaling strength are modulated by the orchestrated action of the actin cytoskeleton, the co-receptor CD4, and its ligand CXCL12. We identified three CXCR4 structural residues that are crucial for nanoclustering and generated an oligomerization-defective mutant that dimerized but did not form nanoclusters in response to CXCL12, which severely impaired signaling. Overall, our data provide new insights to the field of chemokine biology by showing that receptor dimerization in the absence of nanoclustering is unable to fully support CXCL12-mediated responses, including signaling and cell function in vivo.
Collapse
Affiliation(s)
- Laura Martínez-Muñoz
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CSIC), 41092 Sevilla, Spain.
| | - José Miguel Rodríguez-Frade
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Rubén Barroso
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan A Torreño-Pina
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - César A Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; Universitat de Vic, Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| | - Pilar Lucas
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Eva M García-Cuesta
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Enric Gutierrez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Laura Barrio
- B Cell Dynamics Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Javier Vargas
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Graciela Cascio
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Yolanda R Carrasco
- B Cell Dynamics Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - María F García-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Mario Mellado
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Melkes B, Hejnova L, Novotny J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1289-1300. [PMID: 27600870 DOI: 10.1007/s00210-016-1293-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
There are some indications that biased μ-opioid ligands may diversely affect μ-opioid receptor (MOR) properties. Here, we used confocal fluorescence recovery after photobleaching (FRAP) to study the regulation by different MOR agonists of receptor movement within the plasma membrane of HEK293 cells stably expressing a functional yellow fluorescent protein (YFP)-tagged μ-opioid receptor (MOR-YFP). We found that the lateral mobility of MOR-YFP was increased by (D-Ala2,N-MePhe4,Gly5-ol)-enkephalin (DAMGO) and to a lesser extent also by morphine but decreased by endomorphin-2. Interestingly, cholesterol depletion strongly enhanced the ability of morphine to elevate receptor mobility but significantly reduced or even eliminated the effect of DAMGO and endomorphin-2, respectively. Moreover, the ability of DAMGO and endomorphin-2 to influence MOR-YFP movement was diminished by pertussis toxin treatment. The results obtained by agonist-stimulated [35S]GTPγS binding assays indicated that DAMGO exhibited higher efficacy than morphine and endomorphin-2 did and that the efficacy of DAMGO, contrary to the latter agonists, was enhanced by cholesterol depletion. Overall, our study provides clear evidence that biased MOR agonists diversely affect receptor mobility in plasma membranes as well as MOR/G protein coupling and that the regulatory effect of different ligands depends on the membrane cholesterol content. These findings help to delineate the fundamental properties of MOR regarding their interaction with biased MOR ligands and cognate G proteins.
Collapse
Affiliation(s)
- Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
8
|
Veya L, Piguet J, Vogel H. Single Molecule Imaging Deciphers the Relation between Mobility and Signaling of a Prototypical G Protein-coupled Receptor in Living Cells. J Biol Chem 2015; 290:27723-35. [PMID: 26363070 DOI: 10.1074/jbc.m115.666677] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 01/10/2023] Open
Abstract
Lateral diffusion enables efficient interactions between membrane proteins, leading to signal transmission across the plasma membrane. An open question is how the spatiotemporal distribution of cell surface receptors influences the transmembrane signaling network. Here we addressed this issue by studying the mobility of a prototypical G protein-coupled receptor, the neurokinin-1 receptor, during its different phases of cellular signaling. Attaching a single quantum dot to individual neurokinin-1 receptors enabled us to follow with high spatial and temporal resolution over long time regimes the fate of individual receptors at the plasma membrane. Single receptor trajectories revealed a very heterogeneous mobility distribution pattern with diffusion constants ranging from 0.0005 to 0.1 μm(2)/s comprising receptors freely diffusing and others confined in 100-600-nm-sized membrane domains as well as immobile receptors. A two-dimensional representation of mobility and confinement resolved two major, broadly distributed receptor populations, one showing high mobility and low lateral restriction and the other showing low mobility and high restriction. We found that about 40% of the receptors in the basal state are already confined in membrane domains and are associated with clathrin. After stimulation with an agonist, an additional 30% of receptors became further confined. Using inhibitors of clathrin-mediated endocytosis, we found that the fraction of confined receptors at the basal state depends on the quantity of membrane-associated clathrin and is correlated to a significant decrease of the canonical pathway activity of the receptors. This shows that the high plasticity of receptor mobility is of central importance for receptor homeostasis and fine regulation of receptor activity.
Collapse
Affiliation(s)
- Luc Veya
- From the Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Joachim Piguet
- From the Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Vogel
- From the Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Chattopadhyay A, Jafurulla M. Novel insights in membrane biology utilizing fluorescence recovery after photobleaching. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:27-40. [PMID: 25408335 DOI: 10.1007/978-3-319-11280-0_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Serag MF, Abadi M, Habuchi S. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations. Nat Commun 2014; 5:5123. [PMID: 25283876 PMCID: PMC4205855 DOI: 10.1038/ncomms6123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/01/2014] [Indexed: 11/30/2022] Open
Abstract
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. Single-molecule localization and tracking technique is widely used to visualize molecular dynamics in life science, yet it fails to detect molecular conformation. Serag et al. address this limitation via spatial quantization of temporal fluctuations in the cumulative area occupied by molecules.
Collapse
Affiliation(s)
- Maged F Serag
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maram Abadi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Satoshi Habuchi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Carayon K, Moulédous L, Combedazou A, Mazères S, Haanappel E, Salomé L, Mollereau C. Heterologous regulation of Mu-opioid (MOP) receptor mobility in the membrane of SH-SY5Y cells. J Biol Chem 2014; 289:28697-706. [PMID: 25183007 DOI: 10.1074/jbc.m114.588558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dynamic organization of G protein-coupled receptors in the plasma membrane is suspected of playing a role in their function. The regulation of the diffusion mode of the mu-opioid (MOP) receptor was previously shown to be agonist-specific. Here we investigate the regulation of MOP receptor diffusion by heterologous activation of other G protein-coupled receptors and characterize the dynamic properties of the MOP receptor within the heterodimer MOP/neuropeptide FF (NPFF2) receptor. The data show that the dynamics and signaling of the MOP receptor in SH-SY5Y cells are modified by the activation of α2-adrenergic and NPFF2 receptors, but not by the activation of receptors not described to interact with the opioid receptor. By combining, for the first time, fluorescence recovery after photobleaching at variable radius experiments with bimolecular fluorescence complementation, we show that the MOP/NPFF2 heterodimer adopts a specific diffusion behavior that corresponds to a mix of the dynamic properties of both MOP and NPFF2 receptors. Altogether, the data suggest that heterologous regulation is accompanied by a specific organization of receptors in the membrane.
Collapse
Affiliation(s)
- Kévin Carayon
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Lionel Moulédous
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Anne Combedazou
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Serge Mazères
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Evert Haanappel
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Laurence Salomé
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
12
|
A quantitative comparison of single-dye tracking analysis tools using Monte Carlo simulations. PLoS One 2013; 8:e64287. [PMID: 23737978 PMCID: PMC3667770 DOI: 10.1371/journal.pone.0064287] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Single-particle tracking (SPT) is widely used to study processes from membrane receptor organization to the dynamics of RNAs in living cells. While single-dye labeling strategies have the benefit of being minimally invasive, this comes at the expense of data quality; typically a data set of short trajectories is obtained and analyzed by means of the mean square displacements (MSD) or the distribution of the particles' displacements in a set time interval (jump distance, JD). To evaluate the applicability of both approaches, a quantitative comparison of both methods under typically encountered experimental conditions is necessary. Here we use Monte Carlo simulations to systematically compare the accuracy of diffusion coefficients (D-values) obtained for three cases: one population of diffusing species, two populations with different D-values, and a population switching between two D-values. For the first case we find that the MSD gives more or equally accurate results than the JD analysis (relative errors of D-values <6%). If two diffusing species are present or a particle undergoes a motion change, the JD analysis successfully distinguishes both species (relative error <5%). Finally we apply the JD analysis to investigate the motion of endogenous LPS receptors in live macrophages before and after treatment with methyl-β-cyclodextrin and latrunculin B.
Collapse
|
13
|
Caballero-George C, Sorkalla T, Jakobs D, Bolaños J, Raja H, Shearer C, Bermingham E, Häberlein H. Fluorescence correlation spectroscopy in drug discovery: study of Alexa532-endothelin 1 binding to the endothelin ETA receptor to describe the pharmacological profile of natural products. ScientificWorldJournal 2012; 2012:524169. [PMID: 22623909 PMCID: PMC3353486 DOI: 10.1100/2012/524169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/12/2011] [Indexed: 11/17/2022] Open
Abstract
Fluorescence correlation spectroscopy and the newly synthesized Alexa532-ET1 were used to study the dynamics of the endothelin ETA receptor-ligand complex alone and under the influence of a semisynthetic selective antagonist and a fungal extract on living A10 cells. Dose-dependent increase of inositol phosphate production was seen for Alexa532-ET1, and its binding was reduced to 8% by the selective endothelin ETA antagonist BQ-123, confirming the specific binding of Alexa532-ET1 to the endothelin ETA receptor. Two different lateral mobilities of the receptor-ligand complexes within the cell membrane were found allowing the discrimination of different states for this complex. BQ-123 showed a strong binding affinity to the “inactive” receptor state characterized by the slow diffusion time constant. A similar effect was observed for the fungal extract, which completely displaced Alexa532-ET1 from its binding to the “inactive” receptor state. These findings suggest that both BQ-123 and the fungal extract act as inverse agonists.
Collapse
Affiliation(s)
- Catherina Caballero-George
- Department of Molecular Pharmacology and Pharmacognosy, Drug Discovery Center, Institute for Scientific Research and High Technology Services, Panama City, Panama.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mascalchi P, Lamort AS, Salomé L, Dumas F. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes. Biochem Biophys Res Commun 2011; 417:409-13. [PMID: 22166195 DOI: 10.1016/j.bbrc.2011.11.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022]
Abstract
We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20°C and 37°C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.
Collapse
Affiliation(s)
- Patrice Mascalchi
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
| | | | | | | |
Collapse
|
15
|
Kaya Aİ, Uğur O, Altuntaş O, Sayar K, Onaran HO. Long and short distance movements of β(2)-adrenoceptor in cell membrane assessed by photoconvertible fluorescent protein dendra2-β(2)-adrenoceptor fusion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1511-24. [PMID: 21621562 DOI: 10.1016/j.bbamcr.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/04/2011] [Accepted: 05/08/2011] [Indexed: 11/29/2022]
Abstract
Local movements of receptors in the plasma membrane have been extensively studied, as it is generally believed that the dynamics of membrane distribution of receptors regulate their functions. However, the properties of large-scale (>5μm) receptor movements in the membrane are relatively obscure. In the present study, we addressed the question as to whether the large-scale movement of receptor in the plasma membrane at the whole cell level can be explained quantitatively by its local diffusive properties. We used HEK 293 cells transfected with human β2-adrenoceptor fused to photoconvertible fluorescent protein dendra2 as a model system; and found that 1) functional integrity of the dendra2-tagged receptor remains apparently intact; 2) in a mesoscopic scale (~4μm), ~90% of the receptors are mobile on average, and receptor influx to, and out-flux from a membrane area can be symmetrically explained by a diffusion-like process with an effective diffusion coefficient of ~0.1μm(2)/s; 3) these mobility parameters are not affected by the activity state of the receptor (assessed by using constitutively active receptor mutants); 4) in the macroscopic scale (4-40μm), although a slowly diffusing fraction of receptors (with D<0.01μm(2)/s) is identifiable in some cases, the movement of the predominant fraction is perfectly explained by the same effective diffusion process observed in the mesoscopic scale, suggesting that the large scale structure of the cell membrane as felt by the receptor is apparently homogeneous in terms of its mesoscopic properties. We also showed that intracellular compartments and plasma membrane are kinetically connected even at steady-state.
Collapse
Affiliation(s)
- Ali İ Kaya
- Ankara University Faculty of Medicine, Molecular Biology and Technology Development Unit, 06100 Sıhhiye, Ankara, Turkey
| | | | | | | | | |
Collapse
|
16
|
Gerken M, Krippner-Heidenreich A, Steinert S, Willi S, Neugart F, Zappe A, Wrachtrup J, Tietz C, Scheurich P. Fluorescence correlation spectroscopy reveals topological segregation of the two tumor necrosis factor membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1081-9. [DOI: 10.1016/j.bbamem.2010.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/15/2022]
|
17
|
Saulière-Nzeh Ndong A, Saulière-Nzeh AN, Millot C, Corbani M, Mazères S, Lopez A, Salomé L. Agonist-selective dynamic compartmentalization of human Mu opioid receptor as revealed by resolutive FRAP analysis. J Biol Chem 2010; 285:14514-20. [PMID: 20197280 DOI: 10.1074/jbc.m109.076695] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Techniques for analyzing the membrane diffusion of molecules are the most promising methods for investigating the compartmentalization of G-protein-coupled receptors, particularly as relevant to receptor signaling processes. Here, we report fluorescence recovery after photobleaching (FRAP) measurements performed at variable spot radius for human mu opioid (hMOP) receptors on SH-SY5Y neuroblastoma cells in the presence of ligands. Although an antagonist did not affect the behavior of the receptors compared with the basal state, two different agonists, DAMGO and morphine, caused markedly different changes to receptor diffusion. Like receptors in the absence of ligand, receptors bound to morphine exhibited diffusion confined to joined semipermeable domains, but with smaller domain size and diffusion coefficient. This effect was inhibited by pertussis toxin, strongly suggesting that this dynamic behavior is associated with early steps of signaling. In the presence of DAMGO, half of the receptors displayed free long-range diffusion and the other half were confined to smaller isolated domains. Hypertonic sucrose buffer suppressed this effect, which we attribute to receptor entry into clathrin-coated pits. It is likely that the observation of distinct receptor dynamics in the presence of DAMGO and morphine involves the agonist-selective phosphorylation of the receptor.
Collapse
Affiliation(s)
- Aude Saulière-Nzeh Ndong
- IPBS (Institute of Pharmacology and Structural Biology), CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Lipid raft-mediated regulation of G-protein coupled receptor signaling by ligands which influence receptor dimerization: a computational study. PLoS One 2009; 4:e6604. [PMID: 19668374 PMCID: PMC2719103 DOI: 10.1371/journal.pone.0006604] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/22/2009] [Indexed: 11/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are the largest family of cell surface receptors; they activate heterotrimeric G-proteins in response to ligand stimulation. Although many GPCRs have been shown to form homo- and/or heterodimers on the cell membrane, the purpose of this dimerization is not known. Recent research has shown that receptor dimerization may have a role in organization of receptors on the cell surface. In addition, microdomains on the cell membrane termed lipid rafts have been shown to play a role in GPCR localization. Using a combination of stochastic (Monte Carlo) and deterministic modeling, we propose a novel mechanism for lipid raft partitioning of GPCRs based on reversible dimerization of receptors and then demonstrate that such localization can affect GPCR signaling. Modeling results are consistent with a variety of experimental data indicating that lipid rafts have a role in amplification or attenuation of G-protein signaling. Thus our work suggests a new mechanism by which dimerization-inducing or inhibiting characteristics of ligands can influence GPCR signaling by controlling receptor organization on the cell membrane.
Collapse
|
19
|
Lopez A, Salomé L. Membrane functional organisation and dynamic of mu-opioid receptors. Cell Mol Life Sci 2009; 66:2093-108. [PMID: 19300905 PMCID: PMC11115522 DOI: 10.1007/s00018-009-0008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/30/2022]
Abstract
The activation and signalling activity of the membrane mu-opioid receptor (MOP-R) involve interactions among the receptor, G-proteins, effectors and many other membrane or cytosolic proteins. Decades of investigation have led to identification of the main biochemical processes, but the mechanisms governing the successive protein-protein interactions have yet to be established. We will need to unravel the dynamic membrane organisation of this complex and multifaceted molecular machinery if we are to understand these mechanisms. Here, we review and discuss advances in our understanding of the signalling mechanism of MOP-R resulting from biochemical or biophysical studies of the organisation of this receptor in the plasma membrane.
Collapse
Affiliation(s)
- André Lopez
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| | - Laurence Salomé
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| |
Collapse
|
20
|
|
21
|
Neuropeptide FF-sensitive confinement of mu opioid receptor does not involve lipid rafts in SH-SY5Y cells. Biochem Biophys Res Commun 2008; 373:80-4. [DOI: 10.1016/j.bbrc.2008.05.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 12/12/2022]
|
22
|
Destainville N. Theory of fluorescence correlation spectroscopy at variable observation area for two-dimensional diffusion on a meshgrid. SOFT MATTER 2008; 4:1288-1301. [PMID: 32907274 DOI: 10.1039/b718583a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has recently been proposed, with the help of numerical investigations, that fluorescence correlation spectroscopy at variable observation area can reveal the existence of a meshgrid of semi-permeable barriers hindering the two-dimensional diffusion of tagged particles, such as plasmic membrane constituents. We present a complete theory confirming and accounting for these findings. It enables a reliable, quantitative exploitation of experimental data from which the sub-wavelength mesh size can be extracted. Time-scales at which fluorescence correlation spectroscopy must be performed experimentally are discussed in detail.
Collapse
Affiliation(s)
- Nicolas Destainville
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, 118, route de Narbonne, 31062 Toulouse cedex, France and Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, 205, route de Narbonne, 31077 Toulouse cedex, France
| |
Collapse
|