1
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
2
|
Mandal S, Suseela YV, Samanta S, Vileno B, Faller P, Govindaraju T. Fluorescent Peptides Sequester Redox Copper to Mitigate Oxidative Stress, Amyloid Toxicity, and Neuroinflammation. ACS Med Chem Lett 2024; 15:1376-1385. [PMID: 39140073 PMCID: PMC11318102 DOI: 10.1021/acsmedchemlett.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder that significantly contributes to dementia. The lack of effective therapeutic interventions presents a significant challenge to global health. We have developed a set of short peptides (PNGln) conjugated with a dual-functional fluorophoric amino acid (NGln). The lead peptide, P2NGln, displays a high affinity for Cu2+, maintaining the metal ion in a redox-inactive state. This mitigates the cytotoxicity generated by reactive oxygen species (ROS), which are produced by Cu2+ under the reductive conditions of Asc and Aβ16 or Aβ42. Furthermore, P2NGln inhibits both Cu-dependent and -independent fibrillation of Aβ42, along with the subsequent toxicity induced by Aβ42. In addition, P2NGln exhibits inhibitory effects on the production of lipopolysaccharide (LPS)-induced ROS and reactive nitrogen species (RNS) in microglial cells. In vitro and cellular studies indicate that P2NGln could significantly reduce Aβ-Cu2+-induced ROS production, amyloid toxicity, and neuroinflammation, offering an innovative strategy against Alzheimer's disease.
Collapse
Affiliation(s)
- Sabyasachi Mandal
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| | - Yelisetty Venkata Suseela
- Institut
de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Sourav Samanta
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| | - Bertrand Vileno
- Institut
de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut
de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| |
Collapse
|
3
|
Bagheri S, Saboury AA, Saso L. Sequence of Molecular Events in the Development of Alzheimer's Disease: Cascade Interactions from Beta-Amyloid to Other Involved Proteins. Cells 2024; 13:1293. [PMID: 39120323 PMCID: PMC11312137 DOI: 10.3390/cells13151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
4
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
5
|
Jain U, Johari S, Srivastava P. Current Insights of Nanocarrier-Mediated Gene Therapeutics to Treat Potential Impairment of Amyloid Beta Protein and Tau Protein in Alzheimer's Disease. Mol Neurobiol 2024; 61:1969-1989. [PMID: 37831361 DOI: 10.1007/s12035-023-03671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Alzheimer's disease (AD), is the major type of dementia and most progressive, irreversible widespread neurodegenerative disorder affecting the elderly worldwide. The prime hallmarks of Alzheimer's disease (AD) are beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFT). In spite of recent advances and developments in targeting the hallmarks of AD, symptomatic medications that promise neuroprotective activity against AD are currently unable to treat degenerating brain clinically or therapeutically and show little efficacy. The extensive progress of AD therapies over time has resulted in the advent of disease-modifying medications with the potential to alleviate AD. However, due to the presence of a defensive connection between the vascular system and the neural tissues known as the blood-brain barrier (BBB), directing these medications to the site of action in the degenerating brain is the key problem. BBB acts as a highly selective semipermeable membrane that prevents any type of foreign substance from entering the microenvironment of neurons. To overcome this limitation, the revolutionary approach of nanoparticle(NP)/nanocarrier-mediated drug delivery system has marked the era with its unique property to cross, avoid, or disrupt the defensive BBB efficiently and release the modified drug at the target site of action. After comprehensive data mining, this review focuses on the detailed understanding of different types of nanoparticle(NP)/nanocarrier-mediated drug delivery system like liposomes, micelles, gold nanoparticles(NP), polymeric NPs, etc. which have promising potential in carrying the desired drug(cargo) to the location in the degenerated brain thus mitigating the Alzheimer's disease.
Collapse
Affiliation(s)
- Unnati Jain
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India.
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
6
|
Springer C, Humayun D, Skouta R. Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers (Basel) 2024; 16:647. [PMID: 38339398 PMCID: PMC10854864 DOI: 10.3390/cancers16030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Copper, an essential element for various biological processes, demands precise regulation to avert detrimental health effects and potential cell toxicity. This paper explores the mechanisms of copper-induced cell death, known as cuproptosis, and its potential health and disease implications, including cancer therapy. Copper ionophores, such as elesclomol and disulfiram, increase intracellular copper levels. This elevation triggers oxidative stress and subsequent cell death, offering potential implications in cancer therapy. Additionally, copper ionophores disrupt mitochondrial respiration and protein lipoylation, further contributing to copper toxicity and cell death. Potential targets and biomarkers are identified, as copper can be targeted to those proteins to trigger cuproptosis. The role of copper in different cancers is discussed to understand targeted cancer therapies using copper nanomaterials, copper ionophores, and copper chelators. Furthermore, the role of copper is explored through diseases such as Wilson and Menkes disease to understand the physiological mechanisms of copper. Exploring cuproptosis presents an opportunity to improve treatments for copper-related disorders and various cancers, with the potential to bring significant advancements to modern medicine.
Collapse
Affiliation(s)
- Chloe Springer
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Danish Humayun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
7
|
Sun L, Ding X, Kang YJ. ABCE1 selectively promotes HIF-1α transactivation of angiogenic gene expression. J Trace Elem Med Biol 2023; 80:127307. [PMID: 37738929 DOI: 10.1016/j.jtemb.2023.127307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Copper (Cu), by inhibiting the factor inhibiting HIF-1 (FIH-1), promotes the transcriptional activity of hypoxia-inducible factor-1 (HIF-1). OBJECTIVE The present study was undertaken to understand the molecular mechanism by which Cu inhibits FIH-1. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with dimethyloxalylglycine (DMOG) resulting in HIF-1α accumulation and the FIH-1 protein complexes were pulled down for candidate protein analysis. The metal binding sites were predicted by both MetalDetector V2.0 and Metal Ion-Binding Site Prediction Server, and then the actual ability to bind to Cu in vitro was tested by both Copper-Immobilized metal affinity chromatography (Cu-IMAC) and Isothermal Titration Calorimetry (ITC). Subsequently, subcellular localization was monitored by immunocytochemistry, GFP-fusion protein expression plasmid and Western blotting in the nuclear extract. The interaction of candidate protein with HIF-1α and FIH-1 was validated by Co-Immunoprecipitation (Co-IP). Finally, the effect of candidate protein on the FIH-1 structure and HIF-1α transcriptional activity was analyzed by the InterEvDock3 web server and real-time quantitative RT-PCR. RESULTS ATP-binding cassette E1 (ABCE1) was present in the FIH-1 complexes and identified as a leading Cu-binding protein as indicated by a number of possible Cu binding sites. The ability of ABCE1 to bind Cu was demonstrated in vitro. ABCE1 entered the nucleus along with FIH-1 under hypoxic conditions. Protein interaction analysis revealed that ABCE1 prevented FIH-1 to bind iron ions, inhibiting FIH-1 enzymatic activity. ABCE1 silencing suppressed the expression of Cu-dependent HIF-1 target gene BNIP3, not that of Cu-independent IGF-2. CONCLUSION The results demonstrate that ABCE1, as a Cu-binding protein, enters the nucleus under hypoxic conditions and inhibits FIH-1degradation of HIF-1α, thus promoting HIF-1 transactivation of angiogenic gene expression.
Collapse
Affiliation(s)
- Lihui Sun
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Hosseinpour Mashkani SM, Bishop DP, Raoufi-Rad N, Adlard PA, Shimoni O, Golzan SM. Distribution of Copper, Iron, and Zinc in the Retina, Hippocampus, and Cortex of the Transgenic APP/PS1 Mouse Model of Alzheimer's Disease. Cells 2023; 12:cells12081144. [PMID: 37190053 DOI: 10.3390/cells12081144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
A mis-metabolism of transition metals (i.e., copper, iron, and zinc) in the brain has been recognised as a precursor event for aggregation of Amyloid-β plaques, a pathological hallmark of Alzheimer's disease (AD). However, imaging cerebral transition metals in vivo can be extremely challenging. As the retina is a known accessible extension of the central nervous system, we examined whether changes in the hippocampus and cortex metal load are also mirrored in the retina. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualise and quantify the anatomical distribution and load of Cu, Fe, and Zn in the hippocampus, cortex, and retina of 9-month-old Amyloid Precursor Protein/Presenilin 1 (APP/PS1, n = 10) and Wild Type (WT, n = 10) mice. Our results show a similar metal load trend between the retina and the brain, with the WT mice displaying significantly higher concentrations of Cu, Fe, and Zn in the hippocampus (p < 0.05, p < 0.0001, p < 0.01), cortex (p < 0.05, p = 0.18, p < 0.0001) and the retina (p < 0.001, p = 0.01, p < 0.01) compared with the APP/PS1 mice. Our findings demonstrate that dysfunction of the cerebral transition metals in AD is also extended to the retina. This could lay the groundwork for future studies on the assessment of transition metal load in the retina in the context of early AD.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Newsha Raoufi-Rad
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - S Mojtaba Golzan
- Vision Science Group, Graduate School of Health (GSH), University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
10
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
11
|
Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022; 14:1003721. [PMID: 36408110 PMCID: PMC9670316 DOI: 10.3389/fnagi.2022.1003721] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 08/11/2023] Open
Abstract
Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aβ peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aβ production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aβ. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.
Collapse
Affiliation(s)
- M. I. Holubiec
- IBioBA-MPSP Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifwald, University Greifswald, Greifswald, Germany
| | | |
Collapse
|
12
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
13
|
Angelopoulou E, Paudel YN, Shaikh MF, Piperi C. Flotillin: A Promising Biomarker for Alzheimer's Disease. J Pers Med 2020; 10:jpm10020020. [PMID: 32225073 PMCID: PMC7354424 DOI: 10.3390/jpm10020020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of beta amyloid (Aβ) in extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) mainly consisting of tau protein. Although the exact etiology of the disease remains elusive, accumulating evidence highlights the key role of lipid rafts, as well as the endocytic pathways in amyloidogenic amyloid precursor protein (APP) processing and AD pathogenesis. The combination of reduced Aβ42 levels and increased phosphorylated tau protein levels in the cerebrospinal fluid (CSF) is the most well established biomarker, along with Pittsburgh compound B and positron emission tomography (PiB-PET) for amyloid imaging. However, their invasive nature, the cost, and their availability often limit their use. In this context, an easily detectable marker for AD diagnosis even at preclinical stages is highly needed. Flotillins, being hydrophobic proteins located in lipid rafts of intra- and extracellular vesicles, are mainly involved in signal transduction and membrane–protein interactions. Accumulating evidence highlights the emerging implication of flotillins in AD pathogenesis, by affecting APP endocytosis and processing, Ca2+ homeostasis, mitochondrial dysfunction, neuronal apoptosis, Aβ-induced neurotoxicity, and prion-like spreading of Aβ. Importantly, there is also clinical evidence supporting their potential use as biomarker candidates for AD, due to reduced serum and CSF levels that correlate with amyloid burden in AD patients compared with controls. This review focuses on the emerging preclinical and clinical evidence on the role of flotillins in AD pathogenesis, further addressing their potential usage as disease biomarkers.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Correspondence: (M.F.S.); (C.P.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: (M.F.S.); (C.P.)
| |
Collapse
|
14
|
Wang Q, Jiang H, Wang L, Yi H, Li Z, Liu R. Vitegnoside Mitigates Neuronal Injury, Mitochondrial Apoptosis, and Inflammation in an Alzheimer’s Disease Cell Model via the p38 MAPK/JNK Pathway. J Alzheimers Dis 2019; 72:199-214. [DOI: 10.3233/jad-190640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Linlin Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
15
|
Huerta-Aguilar CA, Thangarasu P, Mora JG. Structural influence in the interaction of cysteine with five coordinated copper complexes: Theoretical and experimental studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of Copper in the Onset of Alzheimer's Disease Compared to Other Metals. Front Aging Neurosci 2018; 9:446. [PMID: 29472855 PMCID: PMC5810277 DOI: 10.3389/fnagi.2017.00446] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by amyloid plaques in patients' brain tissue. The plaques are mainly made of β-amyloid peptides and trace elements including Zn2+, Cu2+, and Fe2+. Some studies have shown that AD can be considered a type of metal dyshomeostasis. Among metal ions involved in plaques, numerous studies have focused on copper ions, which seem to be one of the main cationic elements in plaque formation. The involvement of copper in AD is controversial, as some studies show a copper deficiency in AD, and consequently a need to enhance copper levels, while other data point to copper overload and therefore a need to reduce copper levels. In this paper, the role of copper ions in AD and some contradictory reports are reviewed and discussed.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Thomas Haertlé
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- UR 1268 Biopolymères Interactions Assemblages, Institut National de la Recherche Agronomique, Equipe Fonctions et Interactions des Protéines, Nantes, France
- Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Poznań, Poland
| | | | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Arredondo M, González M, Latorre M. Copper. TRACE ELEMENTS AND MINERALS IN HEALTH AND LONGEVITY 2018. [DOI: 10.1007/978-3-030-03742-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Drew SC. The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurosci 2017; 11:317. [PMID: 28626387 PMCID: PMC5455140 DOI: 10.3389/fnins.2017.00317] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The "therapeutic chelation" approach to treating Alzheimer's disease (AD) evolved from the metals hypothesis, with the premise that small molecules can be designed to prevent transition metal-induced amyloid deposition and oxidative stress within the AD brain. Over more than 20 years, countless in vitro studies have been devoted to characterizing metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is an effective approach for treating AD remains widespread. Here, the author plays the devil's advocate, questioning the experimental evidence, the dogma, and the value of therapeutic chelation, with a major focus on copper ions.
Collapse
Affiliation(s)
- Simon C. Drew
- Department of Medicine, Royal Melbourne Hospital, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
19
|
Dirksen K, Spee B, Penning LC, van den Ingh TSGAM, Burgener IA, Watson AL, Groot Koerkamp M, Rothuizen J, van Steenbeek FG, Fieten H. Gene expression patterns in the progression of canine copper-associated chronic hepatitis. PLoS One 2017; 12:e0176826. [PMID: 28459846 PMCID: PMC5411060 DOI: 10.1371/journal.pone.0176826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
Copper is an essential trace element, but can become toxic when present in abundance. The severe effects of copper-metabolism imbalance are illustrated by the inherited disorders Wilson disease and Menkes disease. The Labrador retriever dog breed is a novel non-rodent model for copper-storage disorders carrying mutations in genes known to be involved in copper transport. Besides disease initiation and progression of copper accumulation, the molecular mechanisms and pathways involved in progression towards copper-associated chronic hepatitis still remain unclear. Using expression levels of targeted candidate genes as well as transcriptome micro-arrays in liver tissue of Labrador retrievers in different stages of copper-associated hepatitis, pathways involved in progression of the disease were studied. At the initial phase of increased hepatic copper levels, transcriptomic alterations in livers mainly revealed enrichment for cell adhesion, developmental, inflammatory, and cytoskeleton pathways. Upregulation of targeted MT1A and COMMD1 mRNA shows the liver's first response to rising intrahepatic copper concentrations. In livers with copper-associated hepatitis mainly an activation of inflammatory pathways is detected. Once the hepatitis is in the chronic stage, transcriptional differences are found in cell adhesion adaptations and cytoskeleton remodelling. In view of the high similarities in copper-associated hepatopathies between men and dog extrapolation of these dog data into human biomedicine seems feasible.
Collapse
Affiliation(s)
- Karen Dirksen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Iwan A. Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department für Kleintiere und Pferde, Veterinärmedizinische Universität Wien, Vienna, Austria
| | | | | | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Wild K, August A, Pietrzik CU, Kins S. Structure and Synaptic Function of Metal Binding to the Amyloid Precursor Protein and its Proteolytic Fragments. Front Mol Neurosci 2017; 10:21. [PMID: 28197076 PMCID: PMC5281630 DOI: 10.3389/fnmol.2017.00021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is ultimately linked to the amyloid precursor protein (APP). However, current research reveals an important synaptic function of APP and APP-like proteins (APLP1 and 2). In this context various neurotrophic and neuroprotective functions have been reported for the APP proteolytic fragments sAPPα, sAPPβ and the monomeric amyloid-beta peptide (Aβ). APP is a metalloprotein and binds copper and zinc ions. Synaptic activity correlates with a release of these ions into the synaptic cleft and dysregulation of their homeostasis is linked to different neurodegenerative diseases. Metal binding to APP or its fragments affects its structure and its proteolytic cleavage and therefore its physiological function at the synapse. Here, we summarize the current data supporting this hypothesis and provide a model of how these different mechanisms might be intertwined with each other.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg Heidelberg, Germany
| | - Alexander August
- Division of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| |
Collapse
|
21
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
22
|
Banerjee P, Sahoo A, Anand S, Bir A, Chakrabarti S. The Oral Iron Chelator, Deferasirox, Reverses the Age-Dependent Alterations in Iron and Amyloid-β Homeostasis in Rat Brain: Implications in the Therapy of Alzheimer's Disease. J Alzheimers Dis 2016; 49:681-93. [PMID: 26484920 DOI: 10.3233/jad-150514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The altered metabolism of iron impacts the brain function in multiple deleterious ways during normal aging as well as in Alzheimer's disease. We have shown in this study that chelatable iron accumulates in the aged rat brain along with overexpression of transferrin receptor 1 (TfR1) and ferritin, accompanied by significant alterations in amyloid-β (Aβ) peptide homeostasis in the aging brain, such as an increased production of the amyloid-β protein precursor, a decreased level of neprilysin, and increased accumulation of Aβ42. When aged rats are given daily the iron chelator, deferasirox, over a period of more than 4 months starting from the 18th month, the age-related accumulation of iron and overexpression of TfR1 and ferritin in the brain are significantly prevented. More interestingly, the chelator treatment also considerably reverses the altered Aβ peptide metabolism in the aging brain implying a significant role of iron in the latter phenomenon. Further, other results indicate that iron accumulation results in oxidative stress and the activation of NF-κB in the aged rat brain, which are also reversed by the deferasirox treatment. The analysis of the results together suggests that iron accumulation and oxidative stress interact at multiple levels that include transcriptional and post-transcriptional mechanisms to bring about changes in the expression levels of TfR1 and ferritin and also alterations in Aβ peptide metabolism in the aging rat brain. The efficacy of deferasirox in preventing age-related changes in iron and Aβ peptide metabolism in the aging brain, as shown here, has obvious therapeutic implications for Alzheimer's disease.
Collapse
Affiliation(s)
- Priyanjalee Banerjee
- Department of Biochemistry, Institute of Post Graduate Medical and Educational Research, Kolkata, India
| | - Arghyadip Sahoo
- Department of Biochemistry, Institute of Post Graduate Medical and Educational Research, Kolkata, India
| | - Shruti Anand
- Department of Biochemistry, Institute of Post Graduate Medical and Educational Research, Kolkata, India
| | - Aritri Bir
- Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India
| |
Collapse
|
23
|
Squitti R, Siotto M, Arciello M, Rossi L. Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer's disease. Metallomics 2016; 8:863-73. [DOI: 10.1039/c6mt00101g] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ATP7B, a protein mainly expressed in the hepatocytes, is a copper chaperone that loads the metal into the serum copper–protein ceruloplasmin during its synthesis and also escorts superfluous copper into the bile, by a sophisticated trafficking mechanism.
Collapse
Affiliation(s)
- R. Squitti
- Molecular Markers Laboratory
- IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli
- 25125 Brescia, Italy
| | - M. Siotto
- Don Carlo Gnocchi ONLUS Foundation
- Milan, Italy
| | - M. Arciello
- Department of Biology
- University of Rome Tor Vergata
- Rome, Italy
| | - L. Rossi
- Department of Biology
- University of Rome Tor Vergata
- Rome, Italy
- Consorzio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi” (I.N.B.B.)
- Rome, Italy
| |
Collapse
|
24
|
D'Ambrosi N, Rossi L. Copper at synapse: Release, binding and modulation of neurotransmission. Neurochem Int 2015; 90:36-45. [PMID: 26187063 DOI: 10.1016/j.neuint.2015.07.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
25
|
Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci 2014; 34:11159-72. [PMID: 25122912 DOI: 10.1523/jneurosci.0180-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that the copper-binding amyloid precursor protein (APP) has an essential synaptic function. APP synaptogenic function depends on trans-directed dimerization of the extracellular E1 domain encompassing a growth factor-like domain (GFLD) and a copper-binding domain (CuBD). Here we report the 1.75 Å crystal structure of the GFLD in complex with a copper ion bound with high affinity to an extended hairpin loop at the dimerization interface. In coimmunoprecipitation assays copper binding promotes APP interaction, whereas mutations in the copper-binding sites of either the GFLD or CuBD result in a drastic reduction in APP cis-orientated dimerization. We show that copper is essential and sufficient to induce trans-directed dimerization of purified APP. Furthermore, a mixed culture assay of primary neurons with HEK293 cells expressing different APP mutants revealed that APP potently promotes synaptogenesis depending on copper binding to the GFLD. Together, these findings demonstrate that copper binding to the GFLD of APP is required for APP cis-/trans-directed dimerization and APP synaptogenic function. Thus, neuronal activity or disease-associated changes in copper homeostasis likely go along with altered APP synaptic function.
Collapse
|
26
|
Gough M, Blanthorn-Hazell S, Delury C, Parkin E. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells. Biochem Biophys Res Commun 2014; 453:741-7. [PMID: 25305487 PMCID: PMC4256156 DOI: 10.1016/j.bbrc.2014.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 02/04/2023]
Abstract
Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.
Collapse
Affiliation(s)
- Mallory Gough
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Sophee Blanthorn-Hazell
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Craig Delury
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Edward Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
27
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
28
|
Could Intracrine Biology Play a Role in the Pathogenesis of Transmissable Spongiform Encephalopathies Alzheimer’s Disease and Other Neurodegenerative Diseases? Am J Med Sci 2014; 347:312-20. [DOI: 10.1097/maj.0b013e3182a28af3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc Natl Acad Sci U S A 2013; 110:14771-6. [PMID: 23959870 DOI: 10.1073/pnas.1302212110] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.
Collapse
|
30
|
Hicks DA, Makova NZ, Gough M, Parkin ET, Nalivaeva NN, Turner AJ. The amyloid precursor protein represses expression of acetylcholinesterase in neuronal cell lines. J Biol Chem 2013; 288:26039-26051. [PMID: 23897820 DOI: 10.1074/jbc.m113.461269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The toxic role of amyloid β peptides in Alzheimer's disease is well documented. Their generation is via sequential β- and γ-secretase cleavage of the membrane-bound amyloid precursor protein (APP). Other APP metabolites include the soluble ectodomains sAPPα and sAPPβ and also the amyloid precursor protein intracellular domain (AICD). In this study, we examined whether APP is involved in the regulation of acetylcholinesterase (AChE), which is a key protein of the cholinergic system and has been shown to accelerate amyloid fibril formation and increase their toxicity. Overexpression of the neuronal specific isoform, APP695, in the neuronal cell lines SN56 and SH-SY5Y substantially decreased levels of AChE mRNA, protein, and catalytic activity. Although similar decreases in mRNA levels were observed of the proline-rich anchor of AChE, PRiMA, no changes were seen in mRNA levels of the related enzyme, butyryl-cholinesterase, nor of the high-affinity choline transporter. A γ-secretase inhibitor did not affect AChE transcript levels or enzyme activity in SN56 (APP695) or SH-SY5Y (APP695) cells, showing that regulation of AChE by APP does not require the generation of AICD or amyloid β peptide. Treatment of wild-type SN56 cells with siRNA targeting APP resulted in a significant up-regulation in AChE mRNA levels. Mutagenesis studies suggest that the observed transcriptional repression of AChE is mediated by the E1 region of APP, specifically its copper-binding domain, but not the C-terminal YENTPY motif. In conclusion, AChE is regulated in two neuronal cell lines by APP in a manner independent of the generation of sAPPα, sAPPβ, and AICD.
Collapse
Affiliation(s)
- David A Hicks
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Natalia Z Makova
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mallory Gough
- the Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, United Kingdom, and
| | - Edward T Parkin
- the Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, United Kingdom, and
| | - Natalia N Nalivaeva
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom,; the I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Anthony J Turner
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom,.
| |
Collapse
|
31
|
Noda Y, Asada M, Kubota M, Maesako M, Watanabe K, Uemura M, Kihara T, Shimohama S, Takahashi R, Kinoshita A, Uemura K. Copper enhances APP dimerization and promotes Aβ production. Neurosci Lett 2013; 547:10-5. [PMID: 23669644 DOI: 10.1016/j.neulet.2013.04.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid-β (Aβ) plaques, senile plaque. The Aβ peptide is cleaved from amyloid precursor protein (APP) by β-secretase and γ-secretase. Until now, many literatures have documented that the high concentration of copper is present in Aβ plaques and enhances aggregation of. The APP copper binding domain (CuBD) is located in the N-terminal next to the growth factor-like domain that gets involved in APP homodimerization. Importantly, dimerization of APP has profound effect on Aβ production. We investigated whether copper alters the state of APP dimerization and how it affects APP metabolism. Here, we demonstrate that copper enhanced APP dimerization and increased extracellular release of Aβ. Moreover, copper chelator, D-penicillamine, suppressed APP dimerization and decreased extracellular release of Aβ. These results suggest that the action of copper may be profoundly associated with the pathway of Aβ production in AD pathogenesis.
Collapse
Affiliation(s)
- Yasuha Noda
- Department of Health Science, Kyoto University Graduate School of Medicine, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 2013; 62:540-55. [DOI: 10.1016/j.neuint.2012.08.014] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/30/2012] [Indexed: 01/21/2023]
|
33
|
Brown DR. Gene regulation as a potential avenue for the treatment of neurodegenerative disorders. Expert Opin Drug Discov 2013; 4:515-24. [PMID: 23485084 DOI: 10.1517/17460440902849237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND As more people live to an older age, the frequency of diseases associated with longer life begins to increase. Neurodegenerative disorders are the worst of these in that there is now no treatment that offers any real improvement. For this reason, any new avenue of research that could lead to a treatment needs to be rigorously pursued. In many cases, neurodegenerative diseases are associated with the expression of a protein with an altered conformation or that generates a breakdown product associated with the cause. Clearly, the prevention of this process is a key therapeutic target. OBJECTIVE In this review, the potential for regulating gene expression to prevent or reverse neurodegenerative disease is explored. CONCLUSIONS Whereas much research has been directed at the proteins associated with neurodegeneration, understanding what controls their expression presents a new way this issue could be studied.
Collapse
Affiliation(s)
- David R Brown
- University of Bath, Department of Biology and Biochemistry, Bath, BA2 7AY, UK +44 1225 383133 ; +44 1225 386779 ;
| |
Collapse
|
34
|
Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mutat Res 2013; 733:83-91. [PMID: 23463874 DOI: 10.1016/j.mrfmmm.2012.03.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper ions are well suited to facilitate formation of reactive oxygen species (ROS) that can damage biomolecules, including DNA and chromatin. That this can occur in vitro with isolated DNA or chromatin,or by exposure of cultured mammalian cells to copper complexed with various agents, has been well demonstrated. Whether that is likely to occur in vivo is not as clear. This review addresses the question of whether and how copper ions or complexes – in forms that could be present in vivo, damage DNA and chromosome structure and/or promote epigenetic changes that can lead to pathology and diseases, including cancer and neurological conditions such as Alzheimer's disease, Lewy body dementias, and spongiform encephalopathies. This question is considered in light of our knowledge that copper-dependent enzymes are important contributors to antioxidant defense, and that the mammalian organism has robust mechanisms for maintaining constant levels of copper not only in body fluids but in its major organs. Overall,and except in unusual genetic states that lead to copper overload in specific cells (particularly those in liver), it appears that excessive intake of copper is not a significant factor in the development of disease states.
Collapse
Affiliation(s)
- Maria C Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA.
| |
Collapse
|
35
|
|
36
|
Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 1: An overview. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.037] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zawisza I, Rózga M, Bal W. Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (Aβ, APP, α-synuclein, PrP). Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Coordination of zinc ions to the key proteins of neurodegenerative diseases: Aβ, APP, α-synuclein and PrP. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
So PP, Zeldich E, Seyb KI, Huang MM, Concannon JB, King GD, Chen CD, Cuny GD, Glicksman MA, Abraham CR. Lowering of amyloid beta peptide production with a small molecule inhibitor of amyloid-β precursor protein dimerization. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2012; 1:75-87. [PMID: 22822474 PMCID: PMC3560454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 04/22/2012] [Indexed: 06/01/2023]
Abstract
The amyloid β precursor protein (APP) is a single-pass transmembrane glycoprotein that is ubiquitously expressed in many cell types, including neurons. Amyloidogenic processing of APP by β- and γ-secretases leads to the production of amyloid-β (Aβ) peptides that can oligomerize and aggregate into amyloid plaques, a characteristic hallmark of Alzheimer's disease (AD) brains. Multiple reports suggest that dimerization of APP may play a role in Aβ production; however, it is not yet clear whether APP dimers increase or decrease Aβ and the mechanism is not fully understood. To better understand the relationship between APP dimerization and production of Aβ, a high throughput screen for small molecule modulators of APP dimerization was conducted using APP-Firefly luciferase enzyme complementation to detect APP dimerization. Selected modulators identified from a compound library of 77,440 compounds were tested for their effects on Aβ generation. Two molecules that inhibited APP dimerization produced a reduction in Aβ levels as measured by ELISA. The inhibitors did not change sAPPα or γ-CTF levels, but lowered sAPPβ levels, suggesting that blocking the dimerization is preventing the cleavage by β-secretase in the amyloidogenic processing of APP. To our knowledge, this is the first High Throughput Screen (HTS) effort to identify small molecule modulators of APP dimerization. Inhibition of APP dimerization has previously been suggested as a therapeutic target in AD. The findings reported here further support that modulation of APP dimerization may be a viable means of reducing the production of Aβ.
Collapse
Affiliation(s)
- Pauline Pl So
- Department of Medicine Graduate Program in Molecular Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA. The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J Neurochem 2011; 120 Suppl 1:149-166. [DOI: 10.1111/j.1471-4159.2011.07500.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Abstract
Fe and Cu could represent dietary risk factors for Alzheimer's disease (AD), which has become a global health concern. To establish the relationship between diets high in Cu and Fe and cognitive decline or AD, we have conducted a systematic review of the literature (up to January 2011). We identified two meta-analyses, two systematic reviews, eleven placebo-controlled trials, five observational studies, forty-five case-control studies, thirty autopsy and five uncontrolled studies, and one case report. There were eleven interventional trials that tried to either supplement or deplete Fe and Cu, but none of them provided clear evidence of a beneficial effect on cognitive performance in patients with AD. The prospective studies revealed an association between a diet simultaneously high in SFA and Cu and cognitive decline. Case-control and autopsy studies showed elevated Fe levels in the brains of AD patients, whereas the evidence was less consistent for Cu. In most of the studies, Cu concentrations were unchanged in the cerebrospinal fluid and the brain but increased in the serum. In conclusion, the existing data suggest that diets excessive in Fe or Cu, together with a high intake of SFA, should be avoided in the elderly who are not at risk of anaemia. Basic studies and, building on this, clinical investigations are needed to further elucidate in which dietary patterns and in which patient groups an Fe- and Cu-rich diet might foster the risk of developing AD.
Collapse
|
42
|
Kawahara M, Kato-Negishi M. Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. Int J Alzheimers Dis 2011; 2011:276393. [PMID: 21423554 PMCID: PMC3056430 DOI: 10.4061/2011/276393] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/29/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
Whilst being environmentally abundant, aluminum is not essential for life. On the contrary, aluminum is a widely recognized neurotoxin that inhibits more than 200 biologically important functions and causes various adverse effects in plants, animals, and humans. The relationship between aluminum exposure and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and Parkinsonism dementia in the Kii Peninsula and Guam, and Alzheimer's disease (AD) has been suggested. In particular, the link between aluminum and Alzheimer's disease has been the subject of scientific debate for several decades. However, the complex characteristics of aluminum bioavailability make it difficult to evaluate its toxicity and therefore, the relationship remains to be established. Mounting evidence has suggested that significance of oligomerization of β-amyloid protein and neurotoxicity in the molecular mechanism of AD pathogenesis. Aluminum may play crucial roles as a cross-linker in β-amyloid oligomerization. Here, we review the detailed characteristics of aluminum neurotoxicity based on our own studies and the recent literatures. Our aim is to revisit the link between aluminum and AD and to integrate aluminum and amyloid cascade hypotheses in the context of β-amyloid oligomerization and the interactions with other metals.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki 882-8508, Japan
| | | |
Collapse
|
43
|
Bandyopadhyay S, Huang X, Lahiri DK, Rogers JT. Novel drug targets based on metallobiology of Alzheimer's disease. Expert Opin Ther Targets 2011; 14:1177-97. [PMID: 20942746 DOI: 10.1517/14728222.2010.525352] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD Increased localization of Zn, Fe, Cu and Al within the senile plaques (SP) exacerbates amyloid beta (Aβ)-mediated oxidative damage, and acts as catalyst for Aβ aggregation in Alzheimer's disease (AD). Thus, disruption of aberrant metal-peptide interactions via chelation therapy holds considerable promise as a rational therapeutic strategy against Alzheimer's amyloid pathogenesis. AREAS COVERED IN THIS REVIEW The complexities of metal-induced genesis of SP are reviewed. The recent advances in the molecular mechanism of action of metal chelating agents are discussed with critical assessment of their potential to become drugs. WHAT THE READER WILL GAIN Taking into consideration the interaction of metals with the metal-responsive elements on the Alzheimer's amyloid precursor protein (APP), readers will gain understanding of several points to bear in mind when developing a screening campaign for AD-therapeutics. TAKE HOME MESSAGE A functional iron-responsive element (IRE) RNA stem loop in the 5' untranslated region (UTR) of the APP transcript regulates neural APP translation. Desferrioxamine, clioquinol, tetrathiolmolybdate, dimercaptopropanol, VK-28, and natural antioxidants, such as curcumin and ginko biloba need critical evaluation as AD therapeutics. There is a necessity for novel screens (related to metallobiology) to identify therapeutics effective in AD.
Collapse
|
44
|
Stoppelkamp S, Bell HS, Palacios-Filardo J, Shewan DA, Riedel G, Platt B. In vitro modelling of Alzheimer's disease: degeneration and cell death induced by viral delivery of amyloid and tau. Exp Neurol 2011; 229:226-37. [PMID: 21295028 DOI: 10.1016/j.expneurol.2011.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/15/2022]
Abstract
With increasing life expectancy, Alzheimer's disease (AD) and other dementias pose an increasing and as yet unresolved health problem. A variety of cellular models of AD has helped to decipher some key aspects of amyloid and tau related degeneration. The initial approach of extracellular applications of synthetic peptides has now been replaced by the introduction of amyloid precursor protein (APP) and tau genes. In the present study adenoviral transductions were exploited for gene delivery into primary rat hippocampal and dorsal root ganglion (DRG) cultures to enable comparative and mechanistic studies at the cellular level and subsequent drug testing. Time lapse experiments revealed a different pattern of cell death: apoptotic-like for APP whereas tau positive cells joined and formed clusters. Mutated human APP or tau expression caused accelerated neuronal damage and cell death (cf. EGFP: -50% for APP at 5 days; -40% for tau at 3 days). This reduction in viability was preceded by decreased excitability, monitored via responses to depolarising KCl-challenges in Ca(2+) imaging experiments. Additionally, both transgenes reduced neurite outgrowth in DRG neurones. Treatment studies confirmed that APP induced-damage can be ameliorated by β- and γ-secretase inhibitors (providing protection to 60-100% of control levels), clioquinol (80%) and lithium (100%); while anti-aggregation treatments were beneficial for tau-induced damage (60-90% recovery towards controls). Interestingly, caffeine was the most promising drug candidate for therapeutic intervention with high efficacy in both APP (77%) and tau-induced models (72% recovery). Overall, these cellular models offer advantages for mechanistic studies and target identification in AD and related disorders.
Collapse
Affiliation(s)
- Sandra Stoppelkamp
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD Scotland, UK
| | | | | | | | | | | |
Collapse
|
45
|
Mueller C, Magaki S, Schrag M, Ghosh MC, Kirsch WM. Iron regulatory protein 2 is involved in brain copper homeostasis. J Alzheimers Dis 2010; 18:201-10. [PMID: 19584448 DOI: 10.3233/jad-2009-1136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Trace metal homeostasis is tightly controlled in the brain, as even a slight dysregulation may severely impact normal brain function. This is especially apparent in Alzheimer's disease, where brain homeostasis of trace metals such as copper and iron is dysregulated. As it is known that iron and copper metabolism are linked, we wanted to investigate if a common mechanism could explain the increase in iron and decrease in copper seen in Alzheimer's disease brain. Amyloid-beta protein precursor (AbetaPP) has been implicated in copper efflux from the brain. Furthermore, it was shown that iron regulatory proteins (IRP), which regulate iron homeostasis, can block AbetaPP mRNA translation. In a correlative study we have therefore compared brain regional copper levels and AbetaPP expression in mice with a targeted deletion of IRP2-/-. Compared with controls, six week old IRP2-/- mice had significantly less brain copper in the parietal cortex, hippocampus, ventral striatum, thalamus, hypothalamus, and whole brain, while AbetaPP was significantly upregulated in the hippocampus (p < 0.05) and showed a trend toward upregulation in the thalamus (p < 0.1). This is the first study to demonstrate that iron regulatory proteins affect brain copper levels, which has significant implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudius Mueller
- Neurosurgery Center for Research, Training and Education, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | |
Collapse
|
46
|
Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Proc Natl Acad Sci U S A 2010; 107:5381-6. [PMID: 20212142 DOI: 10.1073/pnas.0911326107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The amyloid precursor protein (APP) is the key player in Alzheimer's disease pathology, yet APP and its analogues are also essential for neuronal development and cell homeostasis in mammals. We have determined the crystal structure of the entire N-terminal APP-E1 domain consisting of the growth factor like and the copper binding domains at 2.7-A resolution and show that E1 functions as a rigid functional entity. The two subdomains interact tightly in a pH-dependent manner via an evolutionarily conserved interface area. Two E1 entities dimerize upon their interaction with heparin, requiring 8-12 sugar rings to form the heparin-bridged APP-E1 dimer in an endothermic and pH-dependent process that is characterized by a low micromolar dissociation constant. Limited proteolysis confirms that the heparin-bridged E1 dimers obtained in solution correspond to a dimer contact in our crystal, enabling us to model this heparin-[APP-E1](2) complex. Correspondingly, the APP-based signal transduction, cell-cell- and/or cell-ECM interaction should depend on dimerization induced by heparin, as well as on pH, arguing that APP could fulfill different functions depending on its (sub)cellular localization.
Collapse
|
47
|
|
48
|
Lutsenko S, Bhattacharjee A, Hubbard AL. Copper handling machinery of the brain. Metallomics 2010; 2:596-608. [DOI: 10.1039/c0mt00006j] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Hung I, Shetty K, Ellis PD, Brey WW, Gan Z. High-field QCPMG NMR of large quadrupolar patterns using resistive magnets. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 36:159-63. [PMID: 19913391 DOI: 10.1016/j.ssnmr.2009.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 05/06/2023]
Abstract
Spectroscopy in a high magnetic field reduces second-order quadrupolar shift while increasing chemical shift. It changes the scale between quadrupolar and chemical shift of half-integer quadrupolar spins. The application of QCPMG multiple echo for acquiring large quadrupolar pattern under the high magnetic field of a 25 T resistive magnet is presented for acquiring large quadrupolar patterns. It shows that temporal field fluctuations and spatial homogeneity of the Keck magnet at the NHMFL contribute about +/- 20 ppm in line broadening. NMR patterns which have breadths of hundreds to thousands of kilohertz can be efficiently recorded using a combination of QCPMG and magnetic field stepping with negligible hindrance from the inhomogeneity and field fluctuations of powered magnets.
Collapse
Affiliation(s)
- Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | | | | | | | | |
Collapse
|
50
|
Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 2009; 15:61-76. [DOI: 10.1007/s00775-009-0600-y] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|