Rosker C, Meur G, Taylor EJA, Taylor CW. Functional ryanodine receptors in the plasma membrane of RINm5F pancreatic beta-cells.
J Biol Chem 2008;
284:5186-94. [PMID:
19116207 PMCID:
PMC2643496 DOI:
10.1074/jbc.m805587200]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptors (RyR) are Ca2+ channels that mediate
Ca2+ release from intracellular stores in response to diverse
intracellular signals. In RINm5F insulinoma cells, caffeine, and
4-chloro-m-cresol (4CmC), agonists of RyR, stimulated Ca2+
entry that was independent of store-operated Ca2+ entry, and
blocked by prior incubation with a concentration of ryanodine that inactivates
RyR. Patch-clamp recording identified small numbers of large-conductance
(γK = 169 pS) cation channels that were activated by
caffeine, 4CmC or low concentrations of ryanodine. Similar channels were
detected in rat pancreatic β-cells. In RINm5F cells, the channels were
blocked by cytosolic, but not extracellular, ruthenium red. Subcellular
fractionation showed that type 3 IP3 receptors (IP3R3)
were expressed predominantly in endoplasmic reticulum, whereas RyR2 were
present also in plasma membrane fractions. Using RNAi selectively to reduce
expression of RyR1, RyR2, or IP3R3, we showed that RyR2 mediates
both the Ca2+ entry and the plasma membrane currents evoked by
agonists of RyR. We conclude that small numbers of RyR2 are selectively
expressed in the plasma membrane of RINm5F pancreatic β-cells, where they
mediate Ca2+ entry.
Collapse