1
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Hou ZL, Han FY, Lou LL, Zhao WY, Huang XX, Yao GD, Song SJ. The nature compound dehydrocrenatidine exerts potent antihepatocellular carcinoma by destroying mitochondrial complexes in vitro and in vivo. Phytother Res 2022; 36:1353-1371. [PMID: 35112410 DOI: 10.1002/ptr.7398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Cumulative evidence indicates that mitochondria dysfunction plays an important role in tumour treatment. Given the limited efficacy and toxicity of current mitochondria-targeted drugs, research into effective mitochondria-targeted anticancer agents remains an irresistible general trend. In this study, it was found that dehydrocrenatidine (DEC), a β-carbolin alkaloid isolated from Picrasma quassiodes, displays a promising growth inhibitory effect in vitro and in vivo by inducing apoptosis of hepatocellular carcinoma (HCC) cells. Mechanistically, we provided that the possible target of DEC against HCC cells was determined by isobaric labels for relative and absolute quantification assay and validated them using further experiments. The results suggested that DEC can target and regulate the function of mitochondrial complexes I, III and IV, affecting oxidative phosphorylation and ultimately leading to mitochondrial dysfunction to exert its anti-HCC effects. In addition, the combination of DEC and sorafenib showed a synergistic effect and was also associated with mitochondrial dysfunction. Importantly, DEC did not show significant toxicity in mice. This study provided a new insight into underlying mechanisms in DEC-treated HCC cells, suggesting that DEC might be a mitochondrial targeting lead compound.
Collapse
Affiliation(s)
- Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Feng-Ying Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Li-Li Lou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wen-Yu Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Sergeeva TF, Shirmanova MV, Zlobovskaya OA, Gavrina AI, Dudenkova VV, Lukina MM, Lukyanov KA, Zagaynova EV. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:604-611. [PMID: 28063999 DOI: 10.1016/j.bbamcr.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022]
Abstract
A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis.
Collapse
Affiliation(s)
- Tatiana F Sergeeva
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| | - Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| | - Olga A Zlobovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| | - Alena I Gavrina
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Nizhny Novgorod State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia.
| | - Varvara V Dudenkova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Nizhny Novgorod State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia.
| | - Maria M Lukina
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Nizhny Novgorod State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia.
| | - Konstantin A Lukyanov
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| | - Elena V Zagaynova
- Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| |
Collapse
|
4
|
Zhang J, Li H, Chai L, Zhang L, Qu J, Chen T. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction. J Microsc 2014; 257:104-16. [PMID: 25354559 DOI: 10.1111/jmi.12189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 09/20/2014] [Indexed: 11/26/2022]
Abstract
Quantification of fluorescence resonance energy transfer (FRET) needs at least two external samples, an acceptor-only reference and a linked FRET reference, to calibrate fluorescence signal. Furthermore, all measurements for references and FRET samples must be performed under the same instrumental conditions. Based on a novel notion to predetermine the molar extinction coefficient ratio (RC ) of acceptor-to-donor for the correction of acceptor excitation crosstalk, we present here a robust and independent emission-spectral unmixing FRET methodology, Iem-spFRET, which can simultaneously measure the E and RC of FRET sample without any external references, such that Iem-spFRET circumvents the rigorous restriction of keeping the same imaging conditions for all FRET experiments and thus can be used for the direct measurement of FRET sample. We validate Iem-spFRET by measuring the absolute E and RC values of standard constructs with different acceptor-to-donor stoichiometry expressed in living cells. Our results demonstrate that Iem-spFRET is a simple and powerful tool for real-time monitoring the dynamic intermolecular interaction within single living cells.
Collapse
Affiliation(s)
- J Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
5
|
Spectral measurement of acceptor-to-donor extinction coefficient ratio in living cells. Micron 2014; 68:98-106. [PMID: 25464147 DOI: 10.1016/j.micron.2014.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/06/2014] [Accepted: 09/24/2014] [Indexed: 01/16/2023]
Abstract
This report presents a simple method named as sp-ECR to determine the molar extinction coefficient ratio (γ(λex)) of acceptor-to-donor in living cells at excitation wavelength λex, which is closely associated with the acceptor cross-excitation, the hardest issue of FRET quantification. sp-ECR determines γ(λex) by spectrally unmixing the emission spectrum of a donor-acceptor tandem construct under λex excitation without any additional references, such that this method can be performed under optimal imaging condition. We used sp-ECR to measure the γ(458) of Venus/Cerulean in living HepG2 cells on a confocal microscope, and the measured values were consistent with those obtained by lux-FRET method. We also used sp-ECR to measure the γ(458) values of Venus/Cerulean and YFP/CFP as well as YFP/GFP, the commonly used FRET FPs pairs in other two kinds of cancer cell lines on the confocal microscope, and found that the extinction coefficients of FPs depended on cell lines. After predetermining the γ(458) of Venus to ECFP, we used sp-ECR method to monitor the staurosporine (STS)-induced dynamical caspase-3 activation in single live A549 cells expressing SCAT3 by spectrally resolving the absolute FRET efficiency of SCAT3, and found that STS-induced caspase-3 activation in single cells is a very rapid process within 20 min.
Collapse
|
6
|
A miniaturized device for bioluminescence analysis of caspase-3/7 activity in a single apoptotic cell. Anal Bioanal Chem 2014; 406:5389-94. [DOI: 10.1007/s00216-014-7949-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/13/2023]
|
7
|
Yu H, Zhang J, Li H, Chen T. Ma-PbFRET: multiple acceptors FRET measurement based on partial acceptor photobleaching. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:171-179. [PMID: 23347498 DOI: 10.1017/s1431927612014079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fluorescence resonance energy transfer (FRET) measurement based on partial acceptor photobleaching (PbFRET) is easy to implement without external references. However, the current PbFRET methods are inapplicable to the construct with multiple acceptors, which largely increase the Förster distance. Here, we proposed a linear theory for the dependence of the acceptor photobleaching probability of construct with multiple acceptors on the photobleaching degree (x) and developed a multiple acceptors PbFRET method (Ma-PbFRET) to measure the FRET efficiency of construct with multiple acceptors (n) by measuring the fluorescence intensities of both donor and acceptor channels before and after acceptor photobleaching. The Ma-PbFRET method was validated by measuring the FRET efficiency of construct with two or three acceptors under different x in living cells. Our experimental results demonstrate that the Ma-PbFRET method is capable of exactly quantifying the FRET efficiency of construct with multiple acceptors, providing a simple and powerful tool to investigate the assembly/disassembly of biomolecular complexes with larger distance in living cells.
Collapse
Affiliation(s)
- Huaina Yu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | | | |
Collapse
|
8
|
Li H, Yu H, Chen T. Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:1021-1029. [PMID: 23026309 DOI: 10.1017/s1431927612001110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Based on the quantitative fluorescence resonance energy transfer (FRET) method named PbFRET we reported recently, we herein developed a partial acceptor photobleaching-based quantitative FRET algorithm named B-PbFRET method. B-PbFRET overcomes not only the acceptor excitation crosstalk and donor emission spectral crosstalk but also the acceptor emission spectral crosstalk that harasses previous methods including fluorescence lifetime (FLIM), fluorescence recovery of donor after acceptor photobleaching, and acceptor sensitized emission (SE)-based methods. B-PbFRET method is implemented by simultaneously measuring the fluorescence intensity of both donor and acceptor channels at donor excitation before and after partial acceptor photobleaching, and it can directly measure the FRET efficiency (E) without any verified references. Based on the theoretical analysis of B-PbFRET, we also developed a more straightforward correction method named C-PbFRET to obtain the absolute E from the value measured by PbFRET for a given donor-acceptor pair. We validated both B-PbFRET and C-PbFRET methods by measuring the E of two linked constructs, 18AA and SCAT3 proteins, in single living cells, and our data demonstrated that both B-PbFRET and C-PbFRET methods can directly measure the absolute E of the linked constructs inside living cells under different degrees of acceptor emission spectral crosstalk.
Collapse
Affiliation(s)
- Huali Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
9
|
Abstract
Fluorescence lifetime imaging (FLI) has been used widely for measuring biomedical samples. Practical guidelines on taking successful FLI data are provided to avoid common errors that arise during the measurement. Several methods for analyzing and interpreting FLI results are also introduced; e.g., a model-free data analysis method called the polar plot allows visualization and analysis of FLI data without iterative fitting, and an image denoising algorithm called variance-stabilizing-transform TI Haar helps to elucidate the information of a complex biomedical sample. The instrument considerations and data analysis of Spectral-FLI are also discussed.
Collapse
|
10
|
Dong Y, Yin S, Li J, Jiang C, Ye M, Hu H. Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3/Mcl-1 pathway. Apoptosis 2011; 16:394-403. [PMID: 21259053 DOI: 10.1007/s10495-011-0573-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The death receptor ligand TRAIL is considered a promising candidate for cancer therapy because of its preferential toxicity to malignant cells. However its efficacy has been challenged by a number of resistance mechanisms. Therefore, agents that can overcome the resistance to enhance therapeutic efficacy of TRAIL are needed. In the current study, we found that bufalin, bufotalin and gamabufotalin, key members of bufadienolides isolated from a traditional Chinese medicine ChanSu, significantly potentiated human breast cancer cells with different status of ER-alpha to apoptosis induction of TRAIL, as evidenced by enhanced Annexin V/FITC positive cells (apoptotic cells), cytoplasmic histone-associated-DNA-fragments, membrane permeability transition (MPT), caspases activation and PARP cleavage. Further mechanistic investigation demonstrated that bufalin was able to significantly decrease Mcl-1 expression and modestly decrease Bcl-XL expression level. Down-regulations of these anti-apoptotic proteins were well correlated with inhibition of transcription factor STAT3 activation. The important consequence of down-regulation Mcl-1 in the enhancement action by combining bufalin with TRAIL was confirmed by either knockdown or overexpression of Mcl-1 approach. Our findings for the first time provided strong evidences that bufadienolide compounds have excellent potential to be developed as a novel class of sensitizers of TRAIL.
Collapse
Affiliation(s)
- Yinhui Dong
- Division of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, China
| | | | | | | | | | | |
Collapse
|
11
|
Wang L, Chen T, Qu J, Wei X. Quantitative analysis of caspase-3 activation by fitting fluorescence emission spectra in living cells. Micron 2009; 40:811-20. [DOI: 10.1016/j.micron.2009.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/24/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
12
|
Wang L, Chen T, Qu J, Wei X. Photobleaching-based quantitative analysis of fluorescence resonance energy transfer inside single living cell. J Fluoresc 2009; 20:27-35. [PMID: 19588234 DOI: 10.1007/s10895-009-0518-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
The current advances of fluorescence microscopy and new fluorescent probes make fluorescence resonance energy transfer (FRET) a powerful technique for studying protein-protein interactions inside living cells. It is very hard to quantitatively analyze FRET efficiency using intensity-based FRET imaging microscopy due to the presence of autofluorescence and spectral crosstalks. In this study, we for the first time developed a novel photobleaching-based method to quantitatively detect FRET efficiency (Pb-FRET) by selectively photobleaching acceptor. The Pb-FRET method requires two fluorescence detection channels: a donor channel (CH ( 1 )) to selectively detect the fluorescence from donor, and a FRET channel (CH ( 2 )) which normally includes the fluorescence from both acceptor and donor due to emission spectral crosstalk. We used the Pb-FRET method to quantitatively measure the FRET efficiency of SCAT3, a caspase-3 indicator based on FRET, inside single living cells stably expressing SCAT3 during STS-induced apoptosis. At 0, 6 and 12 h after STS treatment, the FRET efficiency of SCAT3 obtained by Pb-FRET inside living cells was verified by two-photon excitation (TPE) fluorescence lifetime imaging microscopy (FLIM). The temporal resolution of Pb-FRET method is in second time-scale for ROI photobleaching, even in microsecond time-scale for spot photobleaching. Our results demonstrate that the Pb-FRET method is independent of photobleaching degree, and is very useful for quantitatively monitoring protein-protein interactions inside single living cell.
Collapse
Affiliation(s)
- Longxiang Wang
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, China
| | | | | | | |
Collapse
|