1
|
Dell'Olmo E, Pane K, Schibeci M, Cesaro A, De Luca M, Ismail S, Gaglione R, Arciello A. Host defense peptides identified in human apolipoprotein B as natural food bio‐preservatives: Evaluation of their biosafety and digestibility. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Ephedra foeminea as a Novel Source of Antimicrobial and Anti-Biofilm Compounds to Fight Multidrug Resistance Phenotype. Int J Mol Sci 2023; 24:ijms24043284. [PMID: 36834695 PMCID: PMC9965181 DOI: 10.3390/ijms24043284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Plants are considered a wealthy resource of novel natural drugs effective in the treatment of multidrug-resistant infections. Here, a bioguided purification of Ephedra foeminea extracts was performed to identify bioactive compounds. The determination of antimicrobial properties was achieved by broth microdilution assays to evaluate minimal inhibitory concentration (MIC) values and by crystal violet staining and confocal laser scanning microscopy analyses (CLSM) to investigate the antibiofilm capacity of the isolated compounds. Assays were performed on a panel of three gram-positive and three gram-negative bacterial strains. Six compounds were isolated from E. foeminea extracts for the first time. They were identified by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) analyses as the well-known monoterpenoid phenols carvacrol and thymol and as four acylated kaempferol glycosides. Among them, the compound kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside was found to be endowed with strong antibacterial properties and significant antibiofilm activity against S. aureus bacterial strains. Moreover, molecular docking studies on this compound suggested that the antibacterial activity of the tested ligand against S. aureus strains might be correlated to the inhibition of Sortase A and/or of tyrosyl tRNA synthase. Collectively, the results achieved open interesting perspectives to kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside applicability in different fields, such as biomedical applications and biotechnological purposes such as food preservation and active packaging.
Collapse
|
3
|
Novel Retro-Inverso Peptide Antibiotic Efficiently Released by a Responsive Hydrogel-Based System. Biomedicines 2022; 10:biomedicines10061301. [PMID: 35740323 PMCID: PMC9219916 DOI: 10.3390/biomedicines10061301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Topical antimicrobial treatments are often ineffective on recalcitrant and resistant skin infections. This necessitates the design of antimicrobials that are less susceptible to resistance mechanisms, as well as the development of appropriate delivery systems. These two issues represent a great challenge for researchers in pharmaceutical and drug discovery fields. Here, we defined the therapeutic properties of a novel peptidomimetic inspired by an antimicrobial sequence encrypted in human apolipoprotein B. The peptidomimetic was found to exhibit antimicrobial and anti-biofilm properties at concentration values ranging from 2.5 to 20 µmol L−1, to be biocompatible toward human skin cell lines, and to protect human keratinocytes from bacterial infections being able to induce a reduction of bacterial units by two or even four orders of magnitude with respect to untreated samples. Based on these promising results, a hyaluronic-acid-based hydrogel was devised to encapsulate and to specifically deliver the selected antimicrobial agent to the site of infection. The developed hydrogel-based system represents a promising, effective therapeutic option by combining the mechanical properties of the hyaluronic acid polymer with the anti-infective activity of the antimicrobial peptidomimetic, thus opening novel perspectives in the treatment of skin infections.
Collapse
|
4
|
Chen H, Sun D, Tian Y, Fan H, Liu Y, Morozova-Roche LA, Zhang C. Surface-Directed Structural Transition of Amyloidogenic Aggregates and the Resulting Neurotoxicity. ACS OMEGA 2020; 5:2856-2864. [PMID: 32095707 PMCID: PMC7034003 DOI: 10.1021/acsomega.9b03671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The transition of amyloidogenic species into ordered structures (i.e., prefibrillar oligomers, protofibrils, mature fibrils, and amyloidogenic aggregates) is closely associated with many neurodegenerative disease pathologies. It is increasingly appreciated that the liquid-solid interface contributes to peptide aggregation under physiological conditions. However, much remains to be explored on the molecular mechanism of surface-directed amyloid formation. We herein demonstrate that physical environmental conditions (i.e., negatively charged surface) affect amyloid formation. Nontoxic amyloid aggregates quickly develop into intertwisting fibrils on a negatively charged mica surface. These fibrillar structures show significant cytotoxicity on both neuroblastoma cell-lines (SH-SY5Y) and primary neural stem cells. Our results suggest an alternative amyloid development pathway, following which Aβ peptides form large amyloidogenic aggregates upon stimulation, and later transit into neurotoxic fibrillar structures while being trapped and aligned by a negatively charged surface. Conceivably, the interplay between chemical and physical environmental conditions plays important roles in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hao Chen
- School
of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Dan Sun
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069, China
| | - Yin Tian
- Laboratory
of Stem Cell and Tissue Engineering, Chongqing
Medical University, Chongqing 400016, China
| | - Haiming Fan
- College
of Chemistry and Materials Science, Northwest
University, Xi’an 710127, China
| | - Yonggang Liu
- Laboratory
of Stem Cell and Tissue Engineering, Chongqing
Medical University, Chongqing 400016, China
| | | | - Ce Zhang
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069, China
| |
Collapse
|
5
|
Kurimitsu N, Mizuguchi C, Fujita K, Taguchi S, Ohgita T, Nishitsuji K, Shimanouchi T, Saito H. Phosphatidylethanolamine accelerates aggregation of the amyloidogenic N-terminal fragment of apoA-I. FEBS Lett 2020; 594:1443-1452. [PMID: 31968125 DOI: 10.1002/1873-3468.13737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Membrane lipid composition is known to influence aggregation and fibril formation of many amyloidogenic proteins. Here, we found that phosphatidylethanolamine (PE) accelerates aggregation of the N-terminal 1-83 fragment of an amyloidogenic G26R variant of apoA-I on lipid membranes. Circular dichroism and isothermal titration calorimetry measurements demonstrated that PE does not affect the α-helical structure and lipid binding property of apoA-I 1-83/G26R. Rather, fluorescence measurements indicated that PE induces more ordered lipid packing at the interfacial and acyl chain regions, providing more hydrophobic environments especially around the highly amyloidogenic regions in apoA-I on the membrane surface. These results suggest that PE promotes aggregation of the amyloidogenic N-terminal fragment of apoA-I on lipid membranes by inducing hydrophobic membrane environments.
Collapse
Affiliation(s)
- Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suzuno Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
6
|
Del Giudice R, Pesce A, Cozzolino F, Monti M, Relini A, Piccoli R, Arciello A, Monti DM. Effects of iron on the aggregation propensity of the N-terminal fibrillogenic polypeptide of human apolipoprotein A-I. Biometals 2018; 31:551-559. [DOI: 10.1007/s10534-018-0101-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
|
7
|
Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Sci Rep 2018; 8:5497. [PMID: 29615818 PMCID: PMC5882889 DOI: 10.1038/s41598-018-23920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 01/31/2023] Open
Abstract
Here, we examined the effects of phosphatidylserine (PS) and cholesterol on the fibril-forming properties of the N-terminal 1‒83 fragment of an amyloidogenic G26R variant of apoA-I bound to small unilamellar vesicles. A thioflavin T fluorescence assay together with microscopic observations showed that PS significantly retards the nucleation step in fibril formation by apoA-I 1‒83/G26R, whereas cholesterol slightly enhances fibril formation. Circular dichroism analyses demonstrated that PS facilitates a structural transition from random coil to α-helix in apoA-I 1‒83/G26R with great stabilization of the α-helical structure upon lipid binding. Isothermal titration calorimetry measurements revealed that PS induces a marked increase in capacity for binding of apoA-I 1‒83/G26R to the membrane surface, perhaps due to electrostatic interactions of positively charged amino acids in apoA-I with PS. Such effects of PS to enhance lipid interactions and inhibit fibril formation of apoA-I were also observed for the amyloidogenic region-containing apoA-I 8‒33/G26R peptide. Fluorescence measurements using environment-sensitive probes indicated that PS induces a more solvent-exposed, membrane-bound conformation in the amyloidogenic region of apoA-I without affecting membrane fluidity. Since cell membranes have highly heterogeneous lipid compositions, our findings may provide a molecular basis for the preferential deposition of apoA-I amyloid fibrils in tissues and organs.
Collapse
|
8
|
Arciello A, Piccoli R, Monti DM. Apolipoprotein A-I: the dual face of a protein. FEBS Lett 2016; 590:4171-4179. [DOI: 10.1002/1873-3468.12468] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Angela Arciello
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| | - Renata Piccoli
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| | - Daria Maria Monti
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| |
Collapse
|
9
|
Insights into the interaction of the N-terminal amyloidogenic polypeptide of ApoA-I with model cellular membranes. Biochim Biophys Acta Gen Subj 2016; 1860:795-801. [DOI: 10.1016/j.bbagen.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/27/2015] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
|
10
|
Mizuguchi C, Ogata F, Mikawa S, Tsuji K, Baba T, Shigenaga A, Shimanouchi T, Okuhira K, Otaka A, Saito H. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes. J Biol Chem 2015; 290:20947-20959. [PMID: 26175149 DOI: 10.1074/jbc.m115.664227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 02/01/2023] Open
Abstract
The N-terminal amino acid 1-83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1-83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8-33 and 8-33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1-83 fragment and 8-33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1-83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Fuka Ogata
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Shiho Mikawa
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kohei Tsuji
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Teruhiko Baba
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Keiichiro Okuhira
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Hiroyuki Saito
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
11
|
Membrane Effects of N-Terminal Fragment of Apolipoprotein A-I: A Fluorescent Probe Study. J Fluoresc 2015; 25:253-61. [DOI: 10.1007/s10895-015-1501-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
|
12
|
Das M, Mei X, Jayaraman S, Atkinson D, Gursky O. Amyloidogenic mutations in human apolipoprotein A-I are not necessarily destabilizing - a common mechanism of apolipoprotein A-I misfolding in familial amyloidosis and atherosclerosis. FEBS J 2014; 281:2525-42. [PMID: 24702826 DOI: 10.1111/febs.12809] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/19/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
High-density lipoproteins and their major protein, apolipoprotein A-I (apoA-I), remove excess cellular cholesterol and protect against atherosclerosis. However, in acquired amyloidosis, nonvariant full-length apoA-I deposits as fibrils in atherosclerotic plaques; in familial amyloidosis, N-terminal fragments of variant apoA-I deposit in vital organs, damaging them. Recently, we used the crystal structure of Δ(185-243)apoA-I to show that amyloidogenic mutations destabilize apoA-I and increase solvent exposure of the extended strand 44-55 that initiates β-aggregation. In the present study, we test this hypothesis by exploring naturally occurring human amyloidogenic mutations, W50R and G26R, within or close to this strand. The mutations caused small changes in the protein's α-helical content, stability, proteolytic pattern and protein-lipid interactions. These changes alone were unlikely to account for amyloidosis, suggesting the importance of other factors. Sequence analysis predicted several amyloid-prone segments that can initiate apoA-I misfolding. Aggregation studies using N-terminal fragments verified this prediction experimentally. Three predicted N-terminal amyloid-prone segments, mapped on the crystal structure, formed an α-helical cluster. Structural analysis indicates that amyloidogenic mutations or Met86 oxidation perturb native packing in this cluster. Taken together, the results suggest that structural perturbations in the amyloid-prone segments trigger α-helix to β-sheet conversion in the N-terminal ~ 75 residues forming the amyloid core. Polypeptide outside this core can be proteolysed to form 9-11 kDa N-terminal fragments found in familial amyloidosis. Our results imply that apoA-I misfolding in familial and acquired amyloidosis follows a similar mechanism that does not require significant structural destabilization or proteolysis. This novel mechanism suggests potential therapeutic interventions for apoA-I amyloidosis.
Collapse
Affiliation(s)
- Madhurima Das
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
13
|
Lagerstedt JO, Petrlova J, Hilt S, Marek A, Chung Y, Sriram R, Budamagunta MS, Desreux JF, Thonon D, Jue T, Smirnov AI, Voss JC. EPR assessment of protein sites for incorporation of Gd(III) MRI contrast labels. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:252-64. [PMID: 23606429 DOI: 10.1002/cmmi.1518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 10/30/2012] [Accepted: 11/03/2012] [Indexed: 11/06/2022]
Abstract
We have engineered apolipoprotein A-I (apoA-I), a major protein constituent of high-density lipoprotein (HDL), to contain DOTA-chelated Gd(III) as an MRI contrast agent for the purpose of imaging reconstituted HDL (rHDL) biodistribution, metabolism and regulation in vivo. This protein contrast agent was obtained by attaching the thiol-reactive Gd[MTS-ADO3A] label at Cys residues replaced at four distinct positions (52, 55, 76 and 80) in apoA-I. MRI of infused mice previously showed that the Gd-labeled apoA-I migrates to both the liver and the kidney, the organs responsible for HDL catabolism; however, the contrast properties of apoA-I are superior when the ADO3A moiety is located at position 55, compared with the protein labeled at positions 52, 76 or 80. It is shown here that continuous wave X-band (9 GHz) electron paramagnetic resonance (EPR) spectroscopy is capable of detecting differences in the Gd(III) signal when comparing the labeled protein in the lipid-free with the rHDL state. Furthermore, the values of NMR relaxivity obtained for labeled variants in both the lipid-free and rHDL states correlate to the product of the X-band Gd(III) spectral width and the collision frequency between a nitroxide spin label and a polar relaxation agent. Consistent with its superior relaxivity measured by NMR, the rHDL-associated apoA-I containing the Gd[MTS-ADO3A] probe attached to position 55 displays favorable dynamic and water accessibility properties as determined by X-band EPR. While room temperature EPR requires >1 m m Gd(III)-labeled and only >10 µ m nitroxide-labeled protein to resolve the spectrum, the volume requirement is exceptionally low (~5 µl). Thus, X-band EPR provides a practical assessment for the suitability of imaging candidates containing the site-directed ADO3A contrast probe.
Collapse
Affiliation(s)
- Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mutation mapping of apolipoprotein A-I structure assisted with the putative cholesterol recognition regions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2030-5. [DOI: 10.1016/j.bbapap.2013.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/04/2013] [Accepted: 06/15/2013] [Indexed: 12/22/2022]
|
15
|
Arciello A, De Marco N, Del Giudice R, Guglielmi F, Pucci P, Relini A, Monti DM, Piccoli R. Insights into the fate of the N-terminal amyloidogenic polypeptide of ApoA-I in cultured target cells. J Cell Mol Med 2012; 15:2652-63. [PMID: 21306558 PMCID: PMC4373434 DOI: 10.1111/j.1582-4934.2011.01271.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein A-I (ApoA-I) is an extracellular lipid acceptor, whose role in cholesterol efflux and high-density lipoprotein formation is mediated by ATP-binding cassette transporter A1 (ABCA1). Nevertheless, some ApoA-I variants are associated to systemic forms of amyloidosis, characterized by extracellular fibril deposition in peripheral organs. Heart amyloid fibrils were found to be mainly constituted by the 93-residue N-terminal fragment of ApoA-I, named [1-93]ApoA-I. In this paper, rat cardiomyoblasts were used as target cells to analyse binding, internalization and intracellular fate of the fibrillogenic polypeptide in comparison to full-length ApoA-I. We provide evidence that the polypeptide: (i) binds to specific sites on cell membrane (K(d) = 5.90 ± 0.70 × 10(-7) M), where it partially co-localizes with ABCA1, as also described for ApoA-I; (ii) is internalized mostly by chlatrin-mediated endocytosis and lipid rafts, whereas ApoA-I is internalized preferentially by chlatrin-coated pits and macropinocytosis and (iii) is rapidly degraded by proteasome and lysosomes, whereas ApoA-I partially co-localizes with recycling endosomes. Vice versa, amyloid fibrils, obtained by in vitro aggregation of [1-93]ApoA-I, were found to be unable to enter the cells. We propose that internalization and intracellular degradation of [1-93]ApoA-I may divert the polypeptide from amyloid fibril formation and contribute to the slow progression and late onset that characterize this pathology.
Collapse
Affiliation(s)
- Angela Arciello
- Department of Structural and Functional Biology, University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Monti DM, Di Gaetano S, Del Giudice R, Giangrande C, Amoresano A, Monti M, Arciello A, Piccoli R. Apolipoprotein A-I amyloidogenic variant L174S, expressed and isolated from stably transfected mammalian cells, is associated with fatty acids. Amyloid 2012; 19:21-7. [PMID: 22295944 DOI: 10.3109/13506129.2011.651544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sixteen variants of apolipoprotein A-I (ApoA-I) are associated with hereditary systemic amyloidoses, characterized by amyloid deposition in peripheral organs of patients. As these are heterozygous for the amyloidogenic variants, their isolation from plasma is impracticable and recombinant expression systems are needed. Here we report the expression of recombinant ApoA-I amyloidogenic variant Leu174 with Ser (L174S) in stably transfected Chinese hamster ovary-K1 cells. ApoA-I variant L174S was found to be efficiently secreted in the culture medium, from which it was isolated following a one-step purification procedure. Mass spectrometry analyses allowed the qualitative and quantitative definition of the amyloidogenic variant lipid content, which was found to consist of two saturated and two monounsaturated fatty acids. Interestingly, the same lipid species were found to be associated with the wild-type ApoA-I, expressed and isolated using the same cell system, with lower values of the lipid to protein molar ratios with respect to the amyloidogenic variant. A possible role of fatty acids in trafficking and secretion of apolipoproteins may be hypothesized.
Collapse
Affiliation(s)
- Daria Maria Monti
- Department of Structural and Functional Biology, University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gursky O, Mei X, Atkinson D. The crystal structure of the C-terminal truncated apolipoprotein A-I sheds new light on amyloid formation by the N-terminal fragment. Biochemistry 2011; 51:10-8. [PMID: 22229410 DOI: 10.1021/bi2017014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apolipoprotein A-I (apoA-I) is the main protein of plasma high-density lipoproteins (HDL, or good cholesterol) that remove excess cell cholesterol and protect against atherosclerosis. In hereditary amyloidosis, mutations in apoA-I promote its proteolysis and the deposition of the 9-11 kDa N-terminal fragments as fibrils in vital organs such as kidney, liver, and heart, causing organ damage. All known amyloidogenic mutations in human apoA-I are clustered in two residue segments, 26-107 and 154-178. The X-ray crystal structure of the C-terminal truncated human protein, Δ(185-243)apoA-I, determined to 2.2 Å resolution by Mei and Atkinson, provides the structural basis for understanding apoA-I destabilization in amyloidosis. The sites of amyloidogenic mutations correspond to key positions within the largely helical four-segment bundle comprised of residues 1-120 and 144-184. Mutations in these positions disrupt the bundle structure and destabilize lipid-free apoA-I, thereby promoting its proteolysis. Moreover, many mutations place a hydrophilic or Pro group in the middle of the hydrophobic lipid-binding face of the amphipathic α-helices, which will likely shift the population distribution from HDL-bound to lipid-poor/free apoA-I that is relatively unstable and labile to proteolysis. Notably, the crystal structure shows segment L44-S55 in an extended conformation consistent with the β-strand-like geometry. Exposure of this segment upon destabilization of the four-segment bundle probably initiates the α-helix to β-sheet conversion in amyloidosis. In summary, we propose that the amyloidogenic mutations promote apoA-I proteolysis by destabilizing the protein structure not only in the lipid-free but also in the HDL-bound form, with segment L44-S55 providing a likely template for the cross-β-sheet conformation.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, United States.
| | | | | |
Collapse
|
18
|
Petrlova J, Duong T, Cochran MC, Axelsson A, Mörgelin M, Roberts LM, Lagerstedt JO. The fibrillogenic L178H variant of apolipoprotein A-I forms helical fibrils. J Lipid Res 2011; 53:390-398. [PMID: 22184756 PMCID: PMC3276462 DOI: 10.1194/jlr.m020883] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A number of amyloidogenic variants of apoA-I have been discovered but most have not
been analyzed. Previously, we showed that the G26R mutation of apoA-I leads to
increased β-strand structure, increased N-terminal protease susceptibility, and
increased fibril formation after several days of incubation. In vivo, this and other
variants mutated in the N-terminal domain (residues 26 to ∼90) lead to renal and
hepatic accumulation. In contrast, several mutations identified within residues 170
to 178 lead to cardiac, laryngeal, and cutaneous protein deposition. Here, we
describe the structural changes in the fibrillogenic variant L178H. Like G26R, the
initial structure of the protein exhibits altered tertiary conformation relative to
wild-type protein along with decreased stability and an altered lipid binding
profile. However, in contrast to G26R, L178H undergoes an increase in helical
structure upon incubation at 37°C with a half time (t1/2) of about 12
days. Upon prolonged incubation, the L178H mutant forms fibrils of a diameter of 10
nm that ranges in length from 30 to 120 nm. These results show that apoA-I, known for
its dynamic properties, has the ability to form multiple fibrillar conformations,
which may play a role in the tissue-specific deposition of the individual
variants.
Collapse
Affiliation(s)
- Jitka Petrlova
- Department of Experimental Medical Sciences, Lund University, S-221 84 Lund, Sweden; and
| | - Trang Duong
- Department of Chemistry, California State University Sacramento, Sacramento, CA 95819
| | - Megan C Cochran
- Department of Chemistry, California State University Sacramento, Sacramento, CA 95819
| | - Annika Axelsson
- Department of Experimental Medical Sciences, Lund University, S-221 84 Lund, Sweden; and
| | - Matthias Mörgelin
- Department of Experimental Medical Sciences, and Department of Infection Medicine, Lund University, S-221 84 Lund, Sweden; and
| | - Linda M Roberts
- Department of Chemistry, California State University Sacramento, Sacramento, CA 95819.
| | - Jens O Lagerstedt
- Department of Experimental Medical Sciences, Lund University, S-221 84 Lund, Sweden; and.
| |
Collapse
|
19
|
Caulfield TR. Inter-ring rotation of apolipoprotein A-I protein monomers for the double-belt model using biased molecular dynamics. J Mol Graph Model 2011; 29:1006-14. [PMID: 21570882 DOI: 10.1016/j.jmgm.2011.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 03/29/2011] [Accepted: 04/19/2011] [Indexed: 02/04/2023]
Abstract
The double belt model for lipid-bound discoidal apolipoprotein A-I consists of two alpha-helical monomers bound about an unilamellar bilayer of lipids. Previous work, based on salt bridge calculations, has demonstrated that the L5/5 registration, Milano mutant, and Paris mutant are preferred conformations for apolipoprotein A-I. The salt bridge scoring indicated better energetic scoring in these alignments. The Paris (R151C) and Milano (R173C) mutants indicate a mode of change must be available. To find proper registration, one proposed change is a 'rotationally' independent circular motion of the two protein monomers about the lipid unilamellar bilayer core. Here, we present computational data for independent inter-ring rotation of the two alpha-helical monomers about the lipid unilamellar bilayer core. The simulations presented here support the existing double-belt model. We find the rotation of the two protein monomers is able to occur with biasing. We determine that a cysteine mutant at Glu107 as a possible target for future mutational studies. Since HDL remodeling is necessary for cholesterol transport, our model for remodeling through dynamics has substantial biomedical implications.
Collapse
Affiliation(s)
- Thomas R Caulfield
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
20
|
Raimondi S, Guglielmi F, Giorgetti S, Gaetano SD, Arciello A, Monti DM, Relini A, Nichino D, Doglia SM, Natalello A, Pucci P, Mangione P, Obici L, Merlini G, Stoppini M, Robustelli P, Tartaglia GG, Vendruscolo M, Dobson CM, Piccoli R, Bellotti V. Effects of the Known Pathogenic Mutations on the Aggregation Pathway of the Amyloidogenic Peptide of Apolipoprotein A-I. J Mol Biol 2011; 407:465-76. [DOI: 10.1016/j.jmb.2011.01.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/22/2010] [Accepted: 01/23/2011] [Indexed: 11/30/2022]
|