1
|
Lu D, Chai A, Hu X, Zhong P, Kang N, Kuang X, Yang Z. Conformational Transition of Semiflexible Ring Polyelectrolyte in Tetravalent Salt Solutions: A Simple Numerical Modeling without the Effect of Twisting. Int J Mol Sci 2024; 25:8268. [PMID: 39125837 PMCID: PMC11311450 DOI: 10.3390/ijms25158268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, the conformational behaviors of ring polyelectrolyte in tetravalent salt solutions are discussed in detail through molecular dynamics simulation. For simplification, here we have neglected the effect of the twisting interaction, although it has been well known that both bending and twisting interactions play a deterministic in the steric conformation of a semiflexible ring polymer. The salt concentration CS and the bending energy b take a decisive role in the conformation of the ring polyelectrolyte (PE). Throughout our calculations, the b varies from b = 0 (freely joint chain) to b = 120. The salt concentration CS changes in the range of 3.56 × 10-4 M ≤ CS ≤ 2.49 × 10-1 M. Upon the addition of salt, ring PE contracts at first, subsequently re-expands. More abundant conformations are observed for a semiflexible ring PE. For b = 10, the conformation of semiflexible ring PE shifts from the loop to two-racquet-head spindle, then it condenses into toroid, finally arranges into coil with the increase of CS. As b increases further, four phase transitions are observed. The latter two phase transitions are different. The semiflexible ring PE experiences transformation from toroid to two racquet head spindle, finally to loop in the latter two phase transitions. Its conformation is determined by the competition among the bending energy, cation-bridge, and entropy. Combined, our findings indicate that the conformations of semiflexible ring PE can be controlled by changing the salt concentration and chain stiffness.
Collapse
Affiliation(s)
- Dan Lu
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| | - Aihua Chai
- College of Data Sience, Jiaxing University, Jiaxing 314001, China;
| | - Xiuxia Hu
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| | - Peihua Zhong
- College of Computer Information and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Nianqian Kang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| | - Xianfei Kuang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China; (D.L.); (X.H.); (N.K.); (X.K.)
| |
Collapse
|
2
|
Mayoral E, Hernández Velázquez JD, Gama Goicochea A. The viscosity of polyelectrolyte solutions and its dependence on their persistence length, concentration and solvent quality. RSC Adv 2022; 12:35494-35507. [PMID: 36545093 PMCID: PMC9745642 DOI: 10.1039/d2ra06990c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, a comprehensive study of the influence on shear viscosity of polyelectrolyte concentration, persistence length, salt concentration and solvent quality is reported, using numerical simulations of confined solutions under stationary Poiseuille flow. Various scaling regimes for the viscosity are reproduced, both under good solvent and theta solvent conditions. The key role played by the electrostatic interactions in the viscosity is borne out when the ionic strength is varied. It is argued that these results are helpful for the understanding of viscosity scaling in entangled polyelectrolyte solutions for both rigid and flexible polyelectrolytes in different solvents, which is needed to perform intelligent design of new polyelectrolytes capable of fine tuning the viscosity in complex fluids.
Collapse
Affiliation(s)
- E. Mayoral
- Instituto Nacional de Investigaciones NuclearesOcoyoacac 52750Estado de MéxicoMexico
| | - J. D. Hernández Velázquez
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de EcatepecEcatepec de Morelos 55210Estado de MéxicoMexico
| | - A. Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de EcatepecEcatepec de Morelos 55210Estado de MéxicoMexico
| |
Collapse
|
3
|
Nová L, Uhlík F. Salt Counterion Valency Controls the Ionization and Morphology of Weak Polyelectrolyte Miktoarm Stars. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucie Nová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 00 Praha 2, Czech Republic
| |
Collapse
|
4
|
Sharma V, Farajpour N, Lastra LS, Freedman KJ. DNA Coil Dynamics and Hydrodynamic Gating of Pressure-Biased Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106803. [PMID: 35266283 DOI: 10.1002/smll.202106803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Nanopores are ideally suited for the analysis of long DNA fragments including chromosomal DNA and synthetic DNA with applications in genome sequencing and DNA data storage, respectively. Hydrodynamic fluid flow has been shown to slow down DNA transit time within the pore, however other influences of hydrodynamic forces have yet to be explored. In this report, a broad analysis of pressure-biased nanopores and the impact of hydrodynamics on DNA transit time, capture rate, current blockade depth, and DNA folding are conducted. Using a 10 nm pore, it is shown that hydrodynamic flow inhibits the early stages of linearization of DNA and produces predominately folded events which are initiated by folded DNA (2-strands) entering the pore. Furthermore, utilizing larger pores (30 nm) leads to unique DNA gating behavior in which DNA events can be switched on and off with the application of pressure. A computational model, based on combining electrophoretic drift velocities with fluid velocities, accurately predicts the pore size required to observe DNA gating. Hydrodynamic fluid flow generated by a pressure bias, or potentially more generally by other mechanisms like electroosmotic flow, is shown to have significant effects on DNA sensing and can be useful for DNA sensing technologies.
Collapse
Affiliation(s)
- Vinay Sharma
- University of California Riverside, Department of Bioengineering, 900 University Ave, Riverside, CA, 92521, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, NH-44, Jagti, Jammu, J & K, 181221, India
| | - Nasim Farajpour
- University of California Riverside, Department of Bioengineering, 900 University Ave, Riverside, CA, 92521, USA
| | - Lauren S Lastra
- University of California Riverside, Department of Bioengineering, 900 University Ave, Riverside, CA, 92521, USA
| | - Kevin J Freedman
- University of California Riverside, Department of Bioengineering, 900 University Ave, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Dabhade A, Chaudhury S. Simulation Study of the Conformational Properties of Diblock Polyelectrolytes in Salt Solutions. Chem Asian J 2021; 16:3354-3362. [PMID: 34410041 DOI: 10.1002/asia.202100905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Coarse-grained molecular dynamics simulations are performed to understand the behavior of diblock polyelectrolytes in solutions of divalent salt by studying the conformations of chains over a wide range of salt concentrations. The polymer molecules are modeled as bead spring chains with different charged fractions and the counterions and salt ions are incorporated explicitly. Upon addition of a divalent salt, the salt cations replace the monovalent counterions, and the condensation of divalent salt cations onto the polyelectrolyte increases, and the chains favor to collapse. The condensation of ions changes with the salt concentration and depends on the charged fraction. Also, the degree of collapse at a given salt concentration changes with the increasing valency of the counterion due to the bridging effect. As a quantitative measure of the distribution of counterions around the polyelectrolyte chain, we study the radial distribution function between monomers on different polyelectrolytes and the counterions inside the counterion worm surrounding a polymer chain at different concentrations of the divalent salt. Our simulation results show a strong dependence of salt concentration on the conformational properties of diblock copolymers and indicate that it can tune the self-assembly behaviors of such charged polyelectrolyte block copolymers.
Collapse
Affiliation(s)
- Akash Dabhade
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| |
Collapse
|
6
|
Otto DP, de Villiers MM. Coarse-Grained Molecular Dynamics (CG-MD) Simulation of the Encapsulation of Dexamethasone in PSS/PDDA Layer-by-Layer Assembled Polyelectrolyte Nanocapsules. AAPS PharmSciTech 2020; 21:292. [PMID: 33090318 DOI: 10.1208/s12249-020-01843-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/07/2020] [Indexed: 01/28/2023] Open
Abstract
Experimental studies have reported the fundamental and applied science aspects of polyelectrolyte (PE) layer-by-layer (LbL) self-assembly. LbL nanocoating is a simple and robust technique that can be used to modify the surface properties of nearly any material. These modifications take place by adsorption of mere nanometers of PE to impart previously absent properties to the nanocoated substrate. Paper manufacturing, drug delivery, and antimicrobial applications have since been developed. LbL self-assembly has become a very lucrative field of research. Computational modeling of LbL nanocoating has received limited attention. PE simulations often require significant computational resources and make computational modeling studies challenging. In this study, atomic-level PE and dexamethasone models are developed and then converted into coarse-grained (CG) models. This modeling study is based on experimental results that were previously reported. The CG models showed the effect of salt concentration and the number of PE layers on the LbL drug nanocapsule. The suitability of the model was evaluated and showed that this model can serve as a predictive tool for an LbL-nanocoated drug delivery system. It is suggested that this model can be used to simulate LbL drug delivery systems before the experimental evaluation of the real systems take place.
Collapse
|
7
|
Sabaghi S, Fatehi P. Polarity of Cationic Lignin Polymers: Physicochemical Behavior in Aqueous Solutions and Suspensions. CHEMSUSCHEM 2020; 13:4722-4734. [PMID: 33448658 DOI: 10.1002/cssc.202000897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Indexed: 06/12/2023]
Abstract
The structure of cationic monomers can significantly impact the polarity of lignin after polymerization. Cationic hydrolysis lignin (CHL) polymers were produced by polymerizing hydrolysis lignin (HL) with [3-(methacryloylamino)propyl] trimethylammonium chloride (MAPTAC) or [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (METAC). The METAC monomer has an oxygen atom, with larger electronegativity, in its molecular structure, whereas the MAPTAC monomer contains a nitrogen atom, as well as an extra nonpolar CH2 group, facilitating investigation into the effects of the polarity of CHLs on their physicochemical performance in an aqueous system. CHL polymers are analyzed and their interactions with clay particles are determined in colloidal systems. CHLs are designed to have similar charge densities (2.1-2.2 mmol g-1) and molecular weights (55000-60000 g mol-1 ). The hydrodynamic radius (Hy) and radius of gyration, (Rg) of HL-METAC are larger than those of HL-MAPTAC, implying a more 3-dimensional structure of HL-METAC in aqueous solution. The stability ratio of kaolin particles affirms the better performance of HL-METAC in comparison to HL-MAPTAC, which reflects the better flocculation efficiency of HL-METAC. The results also reveal that salt and urea aqueous solutions affect the Hy, Rg, and configuration of CHL polymers, which alters the flocculation efficiency of HL-METAC and HL-MAPTAC polymers in kaolin suspensions.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan, Shangdong, 250353, P.R. China
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan, Shangdong, 250353, P.R. China
| |
Collapse
|
8
|
Tzorín A, Zamarripa AL, Goicochea AG, Vallejo-Montesinos J. Effect of increasing the number of amino groups in the solubility of Copolysiloxanes using dissipative particle dynamics. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1800006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amanda Tzorín
- Edificio T-12, Facultad de Ciencias Químicas y Farmacia, Ciudad Universitaria, Guatemala, Guatemala
| | - Ana L. Zamarripa
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Armando Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Ecatepec, Estado de México, Mexico
| | | |
Collapse
|
9
|
|
10
|
Vallejo-Montesinos J, Villegas A, Cervantes J, Pérez E, Goicochea AG. Study of Polymer-Solvent Interactions of Complex Polysiloxanes Using Dissipative Particle Dynamics. J MACROMOL SCI B 2018. [DOI: 10.1080/00222348.2018.1503336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Antonio Villegas
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Jorge Cervantes
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Elías Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Armando Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Ecatepec, Mexico
| |
Collapse
|
11
|
Bassalah ME, Cerdà JJ, Sintes T, Aschi A, Othman T. Complex between cationic like-charged polyelectrolytes/surfactants systems. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Surfactant chain length and concentration influence on the interfacial tension of two immiscible model liquids: a coarse-grained approach. J Mol Model 2017; 23:306. [PMID: 28986687 DOI: 10.1007/s00894-017-3474-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
Abstract
The interfacial tension between immiscible liquids is studied as a function of a model linear surfactant length and concentration using coarse-grained, dissipative particle dynamics numerical simulations. The adsorption isotherms obtained from the simulations are found to be in agreement with Langmuir's model. The reduction of the interfacial tension with increasing surfactant concentration is found to display some common characteristics for all the values of chain length modeled, with our predictions being in agreement with Szyszkowski's equation. Lastly, the critical micelle concentration is predicted for all surfactant lengths, finding exponentially decaying behavior, in agreement with Kleven's model. It is argued that these findings can be helpful guiding tools in the interpretation of available experiments and in the design of new ones with new surfactants and polymers.
Collapse
|
13
|
Katiyar RS, Jha PK. Phase behavior of aqueous polyacrylic acid solutions using atomistic molecular dynamics simulations of model oligomers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Procházka K, Šindelka K, Wang X, Limpouchová Z, Lísal M. Self-assembly and co-assembly of block polyelectrolytes in aqueous solutions. Dissipative particle dynamics with explicit electrostatics. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1225130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Karel Šindelka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Xiu Wang
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Martin Lísal
- Laboratory of Chemistry and Physics of Aerosols, Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
- Department of Physics, Faculty of Science, J. E. Purkinje University, Ústí n.L., Czech Republic
| |
Collapse
|
15
|
Terrón-Mejía KA, López-Rendón R, Goicochea AG. Electrostatics in dissipative particle dynamics using Ewald sums with point charges. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:425101. [PMID: 27541198 DOI: 10.1088/0953-8984/28/42/425101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A proper treatment of electrostatic interactions is crucial for the accurate calculation of forces in computer simulations. Electrostatic interactions are typically modeled using Ewald-based methods, which have become some of the cornerstones upon which many other methods for the numerical computation of electrostatic interactions are based. However, their use with charge distributions rather than point charges requires the inclusion of ansatz for the solutions of the Poisson equation, since there is no exact solution known for smeared out charges. The interest in incorporating electrostatic interactions at the scales of length and time that are relevant for the study the physics of soft condensed matter has increased considerably. Using mesoscale simulation techniques, such as dissipative particle dynamics (DPD), allows us to reach longer time scales in numerical simulations, without abandoning the particulate description of the problem. The main problem with incorporating electrostatics into DPD simulations is that DPD particles are soft and those particles with opposite charge can form artificial clusters of ions. Here we show that one can incorporate the electrostatic interactions through Ewald sums with point charges in DPD if larger values of coarse-graining degree are used, where DPD is truly mesoscopic. Using point charges with larger excluded volume interactions, the artificial formation of ionic pairs with point charges can be avoided and one obtains correct predictions. We establish ranges of parameters useful for detecting boundaries where artificial formation of ionic pairs occurs. Lastly, using point charges we predict the scaling properties of polyelectrolytes in solvents of varying quality, and obtain predictions that are in agreement with calculations that use other methods and with recent experimental results.
Collapse
Affiliation(s)
- Ketzasmin A Terrón-Mejía
- Laboratorio de Bioingeniería Molecular a Multiescala, Facultad de Ciencias, Universidad Autónoma del Estado de México, Av. Instituto Literario 100, Toluca 50000, Estado de México, Mexico
| | | | | |
Collapse
|
16
|
Henke PS, Mak CH. An implicit divalent counterion force field for RNA molecular dynamics. J Chem Phys 2016; 144:105104. [DOI: 10.1063/1.4943387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paul S. Henke
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Chi H. Mak
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
17
|
Goicochea AG, Pérez E. Scaling Law of the Disjoining Pressure Reveals 2D Structure of Polymeric Fluids. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201400623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Armando Gama Goicochea
- Instituto de Física; Universidad Autónoma de San Luis Potosí; Álvaro Obregón 64 78000 San Luis Potosí Mexico
| | - Elías Pérez
- Instituto de Física; Universidad Autónoma de San Luis Potosí; Álvaro Obregón 64 78000 San Luis Potosí Mexico
| |
Collapse
|
18
|
Dissipative Particle Dynamics: A Method to Simulate Soft Matter Systems in Equilibrium and Under Flow. SELECTED TOPICS OF COMPUTATIONAL AND EXPERIMENTAL FLUID MECHANICS 2015. [DOI: 10.1007/978-3-319-11487-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Elmahdy MM, Drechsler A, Bittrich E, Uhlmann P, Stamm M. Interactions between silica particles and poly(2-vinylpyridine) brushes in aqueous solutions of monovalent and multivalent salts. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3291-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Goicochea AG, Mayoral E, Klapp J, Pastorino C. Nanotribology of biopolymer brushes in aqueous solution using dissipative particle dynamics simulations: an application to PEG covered liposomes in a theta solvent. SOFT MATTER 2014; 10:166-174. [PMID: 24652222 DOI: 10.1039/c3sm52486h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We undertake the investigation of sheared polymer chains grafted onto flat surfaces to model liposomes covered with polyethylene glycol brushes as a case study for the mechanisms of efficient drug delivery in biologically relevant situations, for example, as carriers for topical treatments of illnesses in the human vasculature. For these applications, specific rheological properties are required, such as low viscosity at high shear rates, to improve the transport of the liposomes. Therefore, extensive non-equilibrium, coarse-grained dissipative particle dynamics simulations of polymer brushes of various lengths and shear rates are performed to obtain the average viscosity and the friction coefficient of the system as functions of the shear rate and polymerization degree under theta-solvent conditions, and we find that the brushes experience considerable shear thinning at large shear rates. The viscosity (η) and the friction coefficient (μ) are shown to obey the scaling laws η ∼ γ dot above (-0.31) and μ ∼ γ dot above (0.69) at high shear rates (γ dot above) in a theta solvent, irrespective of the degree of polymerization of brushes. These results confirm recent scaling predictions and reproduce very well trends in measurements of the viscosity at a high shear rate (γ dot above) of red blood cells in a liposome containing medium.
Collapse
Affiliation(s)
- A Gama Goicochea
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa Ocoyoacac, Estado de México 52750, Mexico.
| | | | | | | |
Collapse
|
21
|
|