1
|
Tomarchio R, Patamia V, Zagni C, Crocetti L, Cilibrizzi A, Floresta G, Rescifina A. Steered Molecular Dynamics Simulations Study on FABP4 Inhibitors. Molecules 2023; 28:molecules28062731. [PMID: 36985701 PMCID: PMC10058326 DOI: 10.3390/molecules28062731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Ordinary small molecule de novo drug design is time-consuming and expensive. Recently, computational tools were employed and proved their efficacy in accelerating the overall drug design process. Molecular dynamics (MD) simulations and a derivative of MD, steered molecular dynamics (SMD), turned out to be promising rational drug design tools. In this paper, we report the first application of SMD to evaluate the binding properties of small molecules toward FABP4, considering our recent interest in inhibiting fatty acid binding protein 4 (FABP4). FABP4 inhibitors (FABP4is) are small molecules of therapeutic interest, and ongoing clinical studies indicate that they are promising for treating cancer and other diseases such as metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Rosario Tomarchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Letizia Crocetti
- Department Neurofarba, Pharmaceutical and Nutraceutical Section, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Nguyen H, Lan PD, Nissley DA, O’Brien EP, Li MS. Electrostatic Interactions Explain the Higher Binding Affinity of the CR3022 Antibody for SARS-CoV-2 than the 4A8 Antibody. J Phys Chem B 2021; 125:7368-7379. [PMID: 34228472 PMCID: PMC8276604 DOI: 10.1021/acs.jpcb.1c03639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Indexed: 12/23/2022]
Abstract
A structural understanding of the mechanism by which antibodies bind SARS-CoV-2 at the atomic level is highly desirable as it can tell the development of more effective antibodies to treat Covid-19. Here, we use steered molecular dynamics (SMD) and coarse-grained simulations to estimate the binding affinity of the monoclonal antibodies CR3022 and 4A8 to the SARS-CoV-2 receptor-binding domain (RBD) and SARS-CoV-2 N-terminal domain (NTD). Consistent with experiments, our SMD and coarse-grained simulations both indicate that CR3022 has a higher affinity for SARS-CoV-2 RBD than 4A8 for the NTD, and the coarse-grained simulations indicate the former binds three times stronger to its respective epitope. This finding shows that CR3022 is a candidate for Covid-19 therapy and is likely a better choice than 4A8. Energetic decomposition of the interaction energies between these two complexes reveals that electrostatic interactions explain the difference in the observed binding affinity between the two complexes. This result could lead to a new approach for developing anti-Covid-19 antibodies in which good candidates must contain charged amino acids in the area of contact with the virus.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Pham Dang Lan
- Life
Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Faculty
of Physics and Engineering Physics, VNUHCM-University
of Science, 227, Nguyen
Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Daniel A. Nissley
- Department
of Statistics, University of Oxford, Oxford
Protein Bioinformatics Group, Oxford OX1 2JD, United Kingdom
| | - Edward P. O’Brien
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Bioinformatics
and Genomics Graduate Program, The Huck
Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Institute
for Computational and Data Sciences, Penn
State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
3
|
Pham T, Nguyen HL, Phan-Toai T, Nguyen H. Investigation of Binding Affinity between Potential Antiviral Agents and PB2 Protein of Influenza A: Non-equilibrium Molecular Dynamics Simulation Approach. Int J Med Sci 2020; 17:2031-2039. [PMID: 32788882 PMCID: PMC7415388 DOI: 10.7150/ijms.46231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
The PB2 protein of the influenza virus RNA polymerase is a major virulence determinant of influenza viruses. It binds to the cap structure at the 5' end of host mRNA to generate short capped RNA fragments that are used as primers for viral transcription named cap-snatching. A large number of the compounds were shown to bind the minimal cap-binding domain of PB2 to inhibit the cap-snatching machinery. However, their binding in the context of an extended form of the PB2 protein has remained elusive. A previous study reported some promising compounds including azaindole and hydroxymethyl azaindole, which were analyzed here to predict binding affinity to PB2 protein using the steered molecular dynamics (SMD) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods. The results show that the rupture force (Fmax) value of three complexes is in agreement with the binding free energy value (ΔGbind) estimated by the MM-PBSA method, whereas for the non-equilibrium pulling work (Wpull) value a small difference between A_PB2-4 and A_PB2-12 was observed. The binding affinity results indicate the A_PB2-12 complex is more favorable than the A_PB2-4 and A_PB2-16 complexes, which means the inhibitor (12) has the potential to be further developed as anti-influenza agents in the treatment of influenza A.
Collapse
Affiliation(s)
- Tri Pham
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.,VNUHCM-University of Technology, Ho Chi Minh City, Vietnam
| | - Hoang Linh Nguyen
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.,VNUHCM-University of Technology, Ho Chi Minh City, Vietnam
| | - Tuyn Phan-Toai
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Hung Nguyen
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Do PC, Lee EH, Le L. Steered Molecular Dynamics Simulation in Rational Drug Design. J Chem Inf Model 2018; 58:1473-1482. [DOI: 10.1021/acs.jcim.8b00261] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Phuc-Chau Do
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Eric H. Lee
- Department of Medicine and Division of Hematology and Oncology, Loma Linda University Medical Center, Loma Linda, California 92350, United States
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
5
|
Nguyen H, Pham T, Nguyen HL, Phan T. Investigation of Binding Affinity Between Prokaryotic Proteins (AHU-IHF) and DNAs: Steered Molecular Dynamics Approach. Appl Biochem Biotechnol 2018; 186:834-846. [DOI: 10.1007/s12010-018-2735-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/12/2018] [Indexed: 11/29/2022]
|
6
|
Binding affinity of the L-742,001 inhibitor to the endonuclease domain of A/H1N1/PA influenza virus variants: Molecular simulation approaches. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nguyen H, Do N, Phan T, Pham T. Steered Molecular Dynamics for Investigating the Interactions Between Insulin Receptor Tyrosine Kinase (IRK) and Variants of Protein Tyrosine Phosphatase 1B (PTP1B). Appl Biochem Biotechnol 2017; 184:401-413. [DOI: 10.1007/s12010-017-2549-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/25/2017] [Indexed: 11/30/2022]
|
8
|
Georgieva ER, Borbat PP, Grushin K, Stoilova-McPhie S, Kulkarni NJ, Liang Z, Freed JH. Conformational Response of Influenza A M2 Transmembrane Domain to Amantadine Drug Binding at Low pH (pH 5.5). Front Physiol 2016; 7:317. [PMID: 27524969 PMCID: PMC4965473 DOI: 10.3389/fphys.2016.00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21-49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD21-49, labeled at the residue L46C with either nitroxide spin-label or Nanogold® reagent, respectively. Electron microscopy confirmed that M2TMD21-49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD21-49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5-8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21-49 through increased motional ordering. In contrast to wild-type M2TMD21-49, the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation found in certain drug-resistant influenza strains. Thus, the inhibited M2TMD21-49 channel is a stable tetramer with a closed C-terminal exit pore. This work is aimed at contributing to the development of structure-based anti-influenza pharmaceuticals.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Kirill Grushin
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Svetla Stoilova-McPhie
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | | | - Zhichun Liang
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| |
Collapse
|
9
|
Investigation of the free energy profiles of amantadine and rimantadine in the AM2 binding pocket. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:63-70. [PMID: 26391902 DOI: 10.1007/s00249-015-1077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/20/2015] [Accepted: 08/30/2015] [Indexed: 01/29/2023]
Abstract
The purpose of this work was to study the mechanism of drug resistance of M2 channel proteins by analyzing the interactions between the drugs amantadine and rimantadine and M2 channel proteins (including the wild type and the three mutants V27A, S31N, and G34A) and the drug binding pathways, by use of a computational approach. Our results showed that multiple drug-binding sites were present in the M2 channel, and the trajectory of the drugs through the M2 channel was determined. A novel method was developed to investigate of free energy profiles of the ligand-protein complexes. Our work provides a new explanation of the large amount of experimental data on drug efficacy.
Collapse
|
10
|
Nguyen H, Tran T, Fukunishi Y, Higo J, Nakamura H, Le L. Computational Study of Drug Binding Affinity to Influenza A Neuraminidase Using Smooth Reaction Path Generation (SRPG) Method. J Chem Inf Model 2015; 55:1936-43. [DOI: 10.1021/acs.jcim.5b00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hung Nguyen
- Life
Science Laboratory, Institute for Computational Science and Technology, Ho Chi
Minh City, Vietnam
| | - Tien Tran
- University of Technology, Ho Chi Minh City, Vietnam
| | - Yoshifumi Fukunishi
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Junichi Higo
- Institute
for Protein Research, Osaka University, Osaka, Japan
| | - Haruki Nakamura
- Institute
for Protein Research, Osaka University, Osaka, Japan
| | - Ly Le
- Life
Science Laboratory, Institute for Computational Science and Technology, Ho Chi
Minh City, Vietnam
- School
of Biotechnology, International University, Vietnam National University, Ho
Chi Minh City, Vietnam
| |
Collapse
|
11
|
Gleed ML, Ioannidis H, Kolocouris A, Busath DD. Resistance-Mutation (N31) Effects on Drug Orientation and Channel Hydration in Amantadine-Bound Influenza A M2. J Phys Chem B 2015; 119:11548-59. [PMID: 26268449 DOI: 10.1021/acs.jpcb.5b05808] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanism of amantadine binding to the S31 variant of the M2 protein of Influenza A is well understood, but the reasons behind N31 M2 amantadine insensitivity remain under investigation. Many molecular dynamics studies have evaluated the influence of amantadine position within the channel pore on its ability to inhibit proton conductance in M2, but little is known about the influence of amantadine rotational orientation. Replica-exchange umbrella sampling, steered, and classic molecular dynamics simulations were performed on amantadine in the solid-state NMR structure of S31 M2 and an N31 M2 homologue, both in the homotetramer configuration, to explore the effects of the position and tilt angle of amantadine on inhibition of the M2 channel. Steered simulations show that amantadine rotates with the amine toward the bulk water as it passes into the hydrophobic entryway lined by Val27 side chains. Results from all simulation types performed indicate that amantadine has a strong, specific orientation with the amine turned inward toward the central cavity in the S31 M2 pore but has variable orientation and a strong propensity to remain outward pointing in N31 M2. Free energy profiles from umbrella sampling, measured relative to bulk water, show amantadine binds more strongly to the S31 M2 pore by 8 kcal/mol in comparison to amantadine in the N31 pore, suggesting that it can escape more readily from the N31 channel through the Val27 secondary gate, whereas it is captured by the S31 channel in the same region. Lower water density and distribution near amantadine in S31 M2 reveal that the drug inhibits proton conductance in S31 M2 because of its inward-pointing configuration, whereas in N31 M2, amantadine forms hydrogen bonds with an N31 side chain and does not widely occlude water occupancy in any configuration. Both amantadine's weaker binding to and weaker water occlusion in N31 M2 might contribute to its inefficacy as an inhibitor of the mutant protein.
Collapse
Affiliation(s)
- Mitchell L Gleed
- Department of Physiology and Developmental Biology, Brigham Young University , Provo, Utah 84602, United States
| | - Harris Ioannidis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University , Provo, Utah 84602, United States
| |
Collapse
|