1
|
Zhang C, Tian FJ, Zuo HW, Qiu QY, Zhang JH, Wei W, Tan ZJ, Zhang Y, Wu WQ, Dai L, Zhang XH. Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging. Nat Commun 2025; 16:113. [PMID: 39747043 PMCID: PMC11697420 DOI: 10.1038/s41467-024-55404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common. The effects of these monovalent ions are similar but also have noticeable differences. From 1 M to 4 M, DNA duplex is destabilized by about 0.3 kBT/bp and the melting temperature decreases by about 10 oC. Our all-atom simulations reveal this effect is caused by overcharging, where excessive ion absorption inverts the effective DNA charge from negative to positive. Furthermore, our coarse-grained simulations obtain a phase diagram that indicates whether DNA overcharging occurs at a given cation valence and concentration. These findings challenge the traditional belief that DNA overcharging occurs only with multivalent ions and have significant implications for polyelectrolyte theory, DNA nanomaterials, DNA nanotechnology, and DNA biophysics.
Collapse
Affiliation(s)
- Chen Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fu-Jia Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Wei Zuo
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Qi-Yuan Qiu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Jia-Hao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics, Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Wen-Qiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China.
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong, China.
| | - Xing-Hua Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Yu YS, Tan RR, Ding HM. Effect of surface functionalization on DNA sequencing using MXene-based nanopores. RSC Adv 2024; 14:405-412. [PMID: 38188982 PMCID: PMC10768716 DOI: 10.1039/d3ra05432b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
As one of the most promising types of label-free nanopores has great potential for DNA sequencing via fast detection of different DNA bases. As one of the most promising types of label-free nanopores, two-dimensional nanopore materials have been developed over the past two decades. However, how to detect different DNA bases efficiently and accurately is still a challenging problem. In the present work, the translocation of four homogeneous DNA strands (i.e., poly(A)20, poly(C)20, poly(G)20, and poly(T)20) through two-dimensional transition-metal carbide (MXene) membrane nanopores with different surface terminal groups is investigated via all-atom molecular dynamics simulations. Interestingly, it is found that the four types of bases can be distinguished by different ion currents and dwell times when they are transported through the Ti3C2(OH)2 nanopore. This is mainly attributed to the different orientation and position distributions of the bases, the hydrogen bonding inside the MXene nanopore, and the interaction of the ssDNA with the nanopore. The present study enhances the understanding of the interaction between DNA strands and MXene nanopores with different functional groups, which may provide useful guidelines for the design of MXene-based devices for DNA sequencing in the future.
Collapse
Affiliation(s)
- You-Sheng Yu
- School of Science, East China University of Technology Nanchang 330013 China
- Laboratory of Solid State Microstructures, Nanjing University Nanjing 210093 China
| | - Rong-Ri Tan
- Department of Physics, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 China
| |
Collapse
|
4
|
Maurer J, Albrecht CS, Herbert P, Heussman D, Chang A, von Hippel PH, Marcus AH. Studies of DNA 'Breathing' by Polarization-Sweep Single-Molecule Fluorescence Microscopy of Exciton-Coupled (iCy3) 2 Dimer-Labeled DNA Fork Constructs. J Phys Chem B 2023; 127:10730-10748. [PMID: 38060691 PMCID: PMC10754251 DOI: 10.1021/acs.jpcb.3c06463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Local fluctuations of the sugar-phosphate backbones and bases of DNA (often called DNA 'breathing') play a variety of critical roles in controlling the functional interactions of the DNA genome with the protein complexes that regulate it. Here, we present a single-molecule fluorescence method that we have used to measure and characterize such conformational fluctuations at and near biologically important positions in model DNA replication fork constructs labeled with exciton-coupled cyanine [(iCy3)2] dimer probes. Previous work has shown that the constructs that we tested here exhibit a broad range of spectral properties at the ensemble level, and these differences can be structurally and dynamically interpreted using our present methodology at the single-molecule level. The (iCy3)2 dimer has one symmetric (+) and one antisymmetric (-) exciton, with the respective transition dipole moments oriented perpendicular to one another. We excite single-molecule samples using a continuous-wave linearly polarized laser, with the polarization direction continuously rotated at the frequency of 1 MHz. The ensuing fluorescence signal is modulated as the laser polarization alternately excites the symmetric and antisymmetric excitons of the (iCy3)2 dimer probe. Phase-sensitive detection of the modulated signal provides information about the distribution of local conformations and the conformational interconversion dynamics of the (iCy3)2 probe. We find that at most construct positions that we examined, the (iCy3)2 dimer-labeled DNA fork constructs can adopt four topologically distinct conformational macrostates. These results suggest that in addition to observing DNA breathing at and near ss-dsDNA junctions, our new methodology should be useful to determine which of these pre-existing macrostates are recognized by, bind to, and are stabilized by various genome-regulatory proteins.
Collapse
Affiliation(s)
- Jack Maurer
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Claire S. Albrecht
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Physics, University of Oregon, Eugene, Oregon 97403
| | - Patrick Herbert
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Dylan Heussman
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Anabel Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Peter H. von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Andrew H. Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
5
|
Sardana D, Alam P, Yadav K, Clovis NS, Kumar P, Sen S. Unusual similarity of DNA solvation dynamics in high-salinity crowding with divalent cations of varying concentrations. Phys Chem Chem Phys 2023; 25:27744-27755. [PMID: 37814577 DOI: 10.1039/d3cp02606j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Double-stranded DNA bears the highest linear negative charge density (2e- per base-pair) among all biopolymers, leading to strong interactions with cations and dipolar water, resulting in the formation of a dense 'condensation layer' around DNA. Interactions involving proteins and ligands binding to DNA are primarily governed by strong electrostatic forces. Increased salt concentrations impede such electrostatic interactions - a situation that prevails in oceanic species due to their cytoplasm being enriched with salts. Nevertheless, how these interactions' dynamics are affected in crowded hypersaline environments remains largely unexplored. Here, we employ steady-state and time-resolved fluorescence Stokes shifts (TRFSS) of a DNA-bound ligand (DAPI) to investigate the static and dynamic solvation properties of DNA in the presence of two divalent cations, magnesium (Mg2+), and calcium (Ca2+) at varying high to very-high concentrations of 0.15 M, 1 M and 2 M. We compare the results to those obtained in physiological concentrations (0.15 M) of monovalent Na+ ions. Combining data from fluorescence femtosecond optical gating (FOG) and time-correlated single photon counting (TCSPC) techniques, dynamic fluorescence Stokes shifts in DNA are analysed over a broad range of time-scales, from 100 fs to 10 ns. We find that while divalent cation crowding strongly influences the DNA stability and ligand binding affinity to DNA, the dynamics of DNA solvation remain remarkably similar across a broad range of five decades in time, even in a high-salinity crowded environment with divalent cations, as compared to the physiological concentration of the Na+ ion. Steady-state and time-resolved data of the DNA-groove-bound ligand are seemingly unaffected by ion-crowding in hypersaline solution, possibly due to ions being mostly displaced by the DNA-bound ligand. Furthermore, the dynamic coupling of cations with nearby water may possibly contribute to a net-neutral effect on the overall collective solvation dynamics in DNA, owing to the strong anti-correlation of their electrostatic interaction energy fluctuations. Such dynamic scenarios may persist within the cellular environment of marine life and other biological cells that experience hypersaline conditions.
Collapse
Affiliation(s)
- Deepika Sardana
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Pramod Kumar
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Singh A, Maity A, Singh N. Structure and Dynamics of dsDNA in Cell-like Environments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1587. [PMID: 36359677 PMCID: PMC9689892 DOI: 10.3390/e24111587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Deoxyribonucleic acid (DNA) is a fundamental biomolecule for correct cellular functioning and regulation of biological processes. DNA's structure is dynamic and has the ability to adopt a variety of structural conformations in addition to its most widely known double-stranded DNA (dsDNA) helix structure. Stability and structural dynamics of dsDNA play an important role in molecular biology. In vivo, DNA molecules are folded in a tightly confined space, such as a cell chamber or a channel, and are highly dense in solution; their conformational properties are restricted, which affects their thermodynamics and mechanical properties. There are also many technical medical purposes for which DNA is placed in a confined space, such as gene therapy, DNA encapsulation, DNA mapping, etc. Physiological conditions and the nature of confined spaces have a significant influence on the opening or denaturation of DNA base pairs. In this review, we summarize the progress of research on the stability and dynamics of dsDNA in cell-like environments and discuss current challenges and future directions. We include studies on various thermal and mechanical properties of dsDNA in ionic solutions, molecular crowded environments, and confined spaces. By providing a better understanding of melting and unzipping of dsDNA in different environments, this review provides valuable guidelines for predicting DNA thermodynamic quantities and for designing DNA/RNA nanostructures.
Collapse
|
7
|
Transformation characteristics of A-DNA in salt solution revealed through molecular dynamics simulations. Biophys Chem 2022; 288:106845. [DOI: 10.1016/j.bpc.2022.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
|
8
|
Bi X, Miao K, Wei L. Alkyne-Tagged Raman Probes for Local Environmental Sensing by Hydrogen-Deuterium Exchange. J Am Chem Soc 2022; 144:8504-8514. [PMID: 35508077 DOI: 10.1021/jacs.2c01991] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alkyne-tagged Raman probes have shown high promise for noninvasive and sensitive visualization of small biomolecules to understand their functional roles in live cells. However, the potential for alkynes to sense cellular environments that goes beyond imaging remains to be further explored. Here, we report a general strategy for Raman imaging-based local environment sensing by hydrogen-deuterium exchange (HDX) of terminal alkynes (termed alkyne-HDX). We first demonstrate, in multiple Raman probes, that deuterations of the alkynyl hydrogens lead to remarkable shifts of alkyne Raman peaks for about 130 cm-1, providing resolvable signals suited for imaging-based analysis with high specificity. Both our analytical derivation and experimental characterizations subsequently establish that HDX kinetics are linearly proportional to both alkyne pKas and environmental pDs. After validating the quantitative nature of this strategy, we apply alkyne-HDX to sensing local chemical and cellular environments. We establish that alkyne-HDX exhibits high sensitivity to various DNA structures and demonstrates the capacity to detect DNA structural changes in situ from UV-induced damage. We further show that this strategy is also applicable to resolve subtle pD variations in live cells. Altogether, our work lays the foundation for utilizing alkyne-HDX strategy to quantitatively sense the local environments for a broad spectrum of applications in complex biological systems.
Collapse
Affiliation(s)
- Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kun Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Liu M, Cui Y, Zhang Y, An R, Li L, Park S, Sugiyama H, Liang X. Single base-modification reports and locates Z-DNA conformation on a Z-B-chimera formed by topological constraint. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Yixiao Cui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| |
Collapse
|
10
|
Nguyen K, Kumar P. Morphological Phenotypes, Cell Division, and Gene Expression of Escherichia coli under High Concentration of Sodium Sulfate. Microorganisms 2022; 10:microorganisms10020274. [PMID: 35208727 PMCID: PMC8875244 DOI: 10.3390/microorganisms10020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/10/2023] Open
Abstract
Sodium and sulfate ions are among the suggested abundant ions on Europa, a moon of Jupiter. In order to investigate the potential habitability of Europa, we study the effects of sodium sulfate (Na2SO4) on a non-halophilic bacterium by subjecting Escherichia coli (E. coli) to a wide range of Na2SO4 concentrations (0–1.0 m). We discover that, as the concentration of sodium sulfate increases, the biomass doubling time increases and the cell growth is completely inhibited at 1.0 m Na2SO4. Furthermore, we find that E. coli exhibits three distinct morphological phenotypes—(i) shortened, (ii) normal, and (iii) elongated/filamented cells at 0.6 m and 0.8 m Na2SO4. We have examined the expression of different genes involved in sodium and sulfate transport (nhaA, nhaB, cysZ, sbp), osmotically driven transport of water (aqpZ), sulfate metabolism (cysN), fatty acid production (fabA), and a global transcriptional regulator (osmZ). Our results suggest that the expression of these genes is not affected significantly at high concentrations of sodium sulfate in the exponential growth phase. Using our experimental data and the existing data in the literature, we show that the osmotic pressure difference may play a major role in determining the growth inhibition of E. coli and B. subtilis at high concentrations of salt.
Collapse
|
11
|
Li L, Zhang Y, Ma W, Chen H, Liu M, An R, Cheng B, Liang X. Nonalternating purine pyrimidine sequences can form stable left-handed DNA duplex by strong topological constraint. Nucleic Acids Res 2021; 50:684-696. [PMID: 34967416 PMCID: PMC8789069 DOI: 10.1093/nar/gkab1283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 11/14/2022] Open
Abstract
In vivo, left-handed DNA duplex (usually refers to Z-DNA) is mainly formed in the region of DNA with alternating purine pyrimidine (APP) sequence and plays significant biological roles. It is well known that d(CG)n sequence can form Z-DNA most easily under negative supercoil conditions, but its essence has not been well clarified. The study on sequence dependence of Z-DNA stability is very difficult without modification or inducers. Here, by the strong topological constraint caused by hybridization of two complementary short circular ssDNAs, left-handed duplex part was generated for various sequences, and their characteristics were investigated by using gel-shift after binding to specific proteins, CD and Tm analysis, and restriction enzyme cleavage. Under the strong topological constraint, non-APP sequences can also form left-handed DNA duplex as stable as that of APP sequences. As compared with non-APP sequences, the thermal stability difference for APP sequences between Z-form and B-form is smaller, which may be the reason that Z-DNA forms preferentially for APP ones. This result can help us to understand why nature selected APP sequences to regulate gene expression by transient Z-DNA formation, as well as why polymer with chirality can usually form both duplexes with left- or right-handed helix.
Collapse
Affiliation(s)
- Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wanzhi Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Bingxiao Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
12
|
Melting of DNA in confined geometries. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:561-569. [PMID: 32920665 DOI: 10.1007/s00249-020-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
The stability of DNA molecules during viral or biotechnological encapsulation is a topic of active current research. We studied the thermal stability of double-stranded DNA molecules of different lengths in a confined space. Using a statistical model, we evaluate the melting profile of DNA molecules in two geometries: conical and cylindrical. Our results show that not only the confinement, but also the geometry of the confined space plays a prominent role in the stability and opening of the DNA duplex. We find that for more confined spaces, cylindrical confinement stabilizes the DNA, but for less confined spaces conical geometry stabilizes the DNA overall. We also analyse the interaction between DNA sequence and stability, and the evenness with which strand separation occurs. Cylindrical and conical geometries enable a better controlled tuning of the stability of DNA encapsulation and the efficiency of its eventual release, compared to spherical or quasi-spherical geometries.
Collapse
|
13
|
Kurus NN, Dultsev FN, Golyshev VM, Nekrasov DV, Pyshnyi DV, Lomzov AA. A QCM-based rupture event scanning technique as a simple and reliable approach to study the kinetics of DNA duplex dissociation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3771-3777. [PMID: 32716423 DOI: 10.1039/d0ay00613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rupture Event Scanning (REVS) is applied for the first time within an approach based on dynamic force spectroscopy. Using model DNA duplexes containing 20 pairs of oligonucleotides including those containing single mismatches, we demonstrated the possibility of reliable determination of the kinetic parameters of dissociation of biomolecular complexes: barrier positions, the rate constants of dissociation, and the lifetime of complexes. Within this approach, mechanical dissociation of DNA duplexes occurs according to a mechanism similar to unzipping. It is shown that this process takes place by overcoming a single energy barrier. In the case where a mismatch is located at the farthest duplex end from the QCM surface, a substantial decrease in the position of the barrier between the bound and unbound states is observed. We suppose that this is due to the formation of an initiation complex containing 3-4 pairs of bases, and this is sufficient for starting duplex unzipping.
Collapse
Affiliation(s)
- N N Kurus
- Rzhanov Institute of Semiconductor Physics SB, RAS, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
14
|
Kuo TC, Wu MW, Lin WC, Matulis D, Yang YS, Li SY, Chen WY. Reduction of interstrand charge repulsion of DNA duplexes by salts and by neutral phosphotriesters – Contrary effects for harnessing duplex formation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Maity A, Singh A, Singh N. Stability of DNA passing through different geometrical pores. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/127/28001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Lee MH, Lin HY, Yang CN. A DNA-based two-way thermometer to report high and low temperatures. Anal Chim Acta 2019; 1081:176-183. [PMID: 31446955 DOI: 10.1016/j.aca.2019.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 07/20/2019] [Indexed: 11/20/2022]
Abstract
Precise description of temperature at the microscale level is essential in many biological applications. In this study, we prepared a DNA-based thermometer that reports low and high temperatures by providing two distinct optical signals. The system is a molecular beacon that carries a loop and a stem, whose conformation is subject to change from a hairpin to a random coil when the temperature changes from low to high. A fluorophore, Cy5, and a quencher, BHQ3, are terminally labeled at the stem ends. Moreover, perylene is included in the middle of the 3'-end stem. The signaling state of Cy5 relies on the relative distance to BHQ3. However, the perylene emission is regulated by its microenvironment (i.e., the oligonucleotide or duplex state). With a temperature variation, the designed thermometer undergoes a change in conformation that leads to two signal patterns with Cy5/off and perylene/on at low temperature and Cy5/on and perylene/off at high temperature. The reversibility and biocompatibility of the thermometer design were examined for potential applications in biological systems.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 840, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 811, Taiwan
| | - Chia-Ning Yang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 811, Taiwan.
| |
Collapse
|
17
|
Li L, Lim SF, Puretzky A, Riehn R, Hallen HD. DNA Methylation Detection Using Resonance and Nanobowtie-Antenna-Enhanced Raman Spectroscopy. Biophys J 2019; 114:2498-2506. [PMID: 29874601 DOI: 10.1016/j.bpj.2018.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 01/04/2023] Open
Abstract
We show that DNA carrying 5-methylcytosine modifications or methylated DNA (m-DNA) can be distinguished from DNA with unmodified cytosine by Raman spectroscopy enhanced by both a bowtie nanoantenna and excitation resonance. In particular, m-DNA can be identified by a peak near 1000 cm-1 and changes in the Raman peaks in the 1200-1700 cm-1 band that are enhanced by the ring-absorption resonance. The identification is robust to the use of resonance Raman and nanoantenna excitation used to obtain significant signal improvement. The primary differences are three additional Raman peaks with methylation at 1014, 1239, and 1639 cm-1 and spectral intensity inversion at 1324 (C5=C6) and 1473 cm-1 (C4=N3) in m-DNA compared to that of DNA with unmodified cytosine. We attribute this to the proximity of the methyl group to the antenna, which brings the (C5=C6) mode closer to experiencing a stronger near-field enhancement. We also show distinct Raman spectral features attributed to the transition of DNA from a hydrated state, when dissolved, to a dried/denatured state. We observe a general broadening of the larger lines and a transfer of spectral weight from the ∼1470 cm-1 vibration to the two higher-energy lines of the dried m-DNA solution. We attribute the new spectral characteristics to DNA softening under high salt conditions and find that the m-DNA is still distinguishable via the ∼1000 cm-1 peak and distribution of the signal in the 1200-1700 cm-1 band. The nanoantenna gain exceeds 20,000, whereas the real signal ratio is much less because of a low average enhanced region occupancy even with these relatively high DNA concentrations. It is improved when fixed DNA in a salt crystal lies near the nanoantenna. The Raman resonance gain profile is consistent with A-term expectations, and the resonance is found at ∼259 nm excitation wavelength.
Collapse
Affiliation(s)
- Ling Li
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Shuang Fang Lim
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Alexander Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Robert Riehn
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Hans D Hallen
- Department of Physics, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|