Models of Replicator Proliferation Involving Differential Replicator Subunit Stability.
ORIGINS LIFE EVOL B 2018;
48:331-342. [PMID:
30203409 DOI:
10.1007/s11084-018-9561-x]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
Several models for the origin of life involve molecules that are capable of self-replication, such as self-replicating polymers composed of RNA or DNA or amino acids. Here we consider a hypothetical replicator (AB) composed of two subunits, A and B. Programs written in Python and C programming languages were used to model AB replicator abundance as a function of cycles of replication (iterations), under specified hypothetical conditions. Two non-exclusive models describe how a reduced stability for B relative to A can have an advantage for replicator activity and/or evolution by generating free A subunits. In model 1, free A subunits associate with AB replicators to create AAB replicators with greater activity. In simulations, reduced stability of B was beneficial when the replication activity of AAB was greater than two times the replication activity of AB. In model 2, the free A subunit is inactive for some number of iterations before it re-creates the B subunit. A re-creates the B subunit with an equal chance of creating B or B', where B' is a mutant that increases AB' replicator activity relative to AB. In simulations, at moderate number of iterations (< 15), a shorter survival time for B is beneficial when the stability of B is greater than the inactive time of A. The results are consistent with the hypothesis that reduced stability for a replicator subunit can be advantageous under appropriate conditions.
Collapse